Articles | Volume 62
https://doi.org/10.5194/adgeo-62-11-2023
https://doi.org/10.5194/adgeo-62-11-2023
05 Oct 2023
 | 05 Oct 2023

Rate-dependence of the compressive and tensile strength of granites

Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, and Zoe Shipton

Related authors

Transient conduit permeability controlled by a shift between compactant shear and dilatant rupture at Unzen volcano (Japan)
Yan Lavallée, Takahiro Miwa, James D. Ashworth, Paul A. Wallace, Jackie E. Kendrick, Rebecca Coats, Anthony Lamur, Adrian Hornby, Kai-Uwe Hess, Takeshi Matsushima, Setsuya Nakada, Hiroshi Shimizu, Bernhard Ruthensteiner, and Hugh Tuffen
Solid Earth, 13, 875–900, https://doi.org/10.5194/se-13-875-2022,https://doi.org/10.5194/se-13-875-2022, 2022
Short summary
Physical and mechanical rock properties of a heterogeneous volcano: the case of Mount Unzen, Japan
Jackie E. Kendrick, Lauren N. Schaefer, Jenny Schauroth, Andrew F. Bell, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Rebecca Coats, Yan Lavallée, and Ben M. Kennedy
Solid Earth, 12, 633–664, https://doi.org/10.5194/se-12-633-2021,https://doi.org/10.5194/se-12-633-2021, 2021
Short summary
Failure criteria for porous dome rocks and lavas: a study of Mt. Unzen, Japan
Rebecca Coats, Jackie E. Kendrick, Paul A. Wallace, Takahiro Miwa, Adrian J. Hornby, James D. Ashworth, Takeshi Matsushima, and Yan Lavallée
Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018,https://doi.org/10.5194/se-9-1299-2018, 2018
Short summary
Repetitive fracturing during spine extrusion at Unzen volcano, Japan
O. D. Lamb, S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée
Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015,https://doi.org/10.5194/se-6-1277-2015, 2015
Short summary
Seismogenic frictional melting in the magmatic column
J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt
Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014,https://doi.org/10.5194/se-5-199-2014, 2014

Cited articles

Alatorre-Ibargüengoitia, M. A., Scheu, B., Dingwell, D. B., Delgado-Granados, H., and Taddeucci, J.: Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions, Earth Planet. Sci. Lett., 291, 60–69, https://doi.org/10.1016/j.epsl.2009.12.051, 2010. 
Alneasan, M., Behnia, M., and Alzo'ubi, A. K.: Experimental observations on the effect of strain rate on rock tensile fracturing, Int. J. Rock Mech. Min., 160, 105256, https://doi.org/10.1016/j.ijrmms.2022.105256, 2022. 
Ashby, M. F., and Sammis, C. G.: The damage mechanics of brittle solids in compression, Pure Appl. Geophys., 133, 489–521, https://doi.org/10.1007/BF00878002, 1990. 
ASTM: D3967-08, Standard test method for splitting tensile strength of intact rock core specimens., ASTM International, West Conshohocken, USA, https://doi.org/10.1520/D3967-08, 2008. 
ASTM: D7012-14e1, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, ASTM International, West Conshohocken, USA, https://doi.org/10.1520/D7012-14E01, 2014. 
Download
Short summary
By testing the strength of granite in compression and tension at a range of deformation rates, we found that the strength increases with faster deformation. This observation highlights that at these rates, relevant for example to geothermal exploration, we have to consider how the rate of deformation impacts the energy released when rocks crack. The results are promising for developing safe procedures for extracting resources from the subsurface.