A conceptual model for the estimation of flood damage to power grids
Panagiotis Asaridis
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Daniela Molinari
Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
Related authors
No articles found.
Marta Ballocci, Daniela Molinari, Giovanni Marin, Marta Galliani, Alessio Domeneghetti, Giovanni Menduni, Simone Sterlacchini, and Francesco Ballio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3017, https://doi.org/10.5194/egusphere-2024-3017, 2024
Short summary
Short summary
This study estimates flood direct damage to businesses in Italy using 812 damage records from five riverine flood case studies. A multiple regression model predicts economic damage based on business size, water depth, and economic sectors. The results show that damage increases non-proportionally with firm size, while water depth mainly affects stock damage. Healthcare, commercial, and manufacturing sectors are most vulnerable to building, stock, and equipment damage, respectively.
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024, https://doi.org/10.5194/nhess-24-3381-2024, 2024
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024, https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Natasha Petruccelli, Luca Mantecchini, Alice Gallazzi, Daniela Molinari, Mohammed Hammouti, Marco Zazzeri, Simone Sterlacchini, Francesco Ballio, Armando Brath, and Alessio Domeneghetti
Proc. IAHS, 385, 407–413, https://doi.org/10.5194/piahs-385-407-2024, https://doi.org/10.5194/piahs-385-407-2024, 2024
Short summary
Short summary
The study illustrates the methodology developed for flood risk assessment for road and railway infrastructures. Through the creation of a detailed database, using different data sources, and the definition of a risk matrix, a risk level (High, Medium, Low and Null) is assigned to each section, considering the physical and functional characteristics of the infrastructure, as well as its relevance and the magnitude of the expected event.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Marta Galliani, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2937–2941, https://doi.org/10.5194/nhess-20-2937-2020, https://doi.org/10.5194/nhess-20-2937-2020, 2020
Short summary
Short summary
INSYDE is a multivariable synthetic model for flood damage assessment of dwellings. The analysis and use of this model highlighted some weaknesses, linked to its complexity, that can undermine its usability and correct implementation. This study proposes a simplified version of INSYDE which maintains its multivariable and synthetic nature but has simpler mathematical formulations permitting an easier use and a direct analysis of the relation between damage and its explanatory variables.
Daniela Molinari, Anna Rita Scorzini, Alice Gallazzi, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 19, 2565–2582, https://doi.org/10.5194/nhess-19-2565-2019, https://doi.org/10.5194/nhess-19-2565-2019, 2019
Short summary
Short summary
The paper presents AGRIDE-c: a conceptual model for the estimation of flood damage to crops. The model estimates both the physical damage on the plants and its economic consequences on the income of the farmers. This allows AGRIDE-c to support effective damage mitigation strategies, at both public and individual farmer levels. The model can be adapted to different geographical and economic contexts, as exemplified by its implementation for the context of northern Italy.
Heidi Kreibich, Thomas Thaler, Thomas Glade, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 19, 551–554, https://doi.org/10.5194/nhess-19-551-2019, https://doi.org/10.5194/nhess-19-551-2019, 2019
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Kai Schröter, Daniela Molinari, Michael Kunz, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 18, 963–968, https://doi.org/10.5194/nhess-18-963-2018, https://doi.org/10.5194/nhess-18-963-2018, 2018
Daniela Molinari, Karin De Bruijn, Jessica Castillo, Giuseppe T. Aronica, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-303, https://doi.org/10.5194/nhess-2017-303, 2017
Preprint retracted
Short summary
Short summary
Flood risk estimates are characterised by significant uncertainties; accordingly, evaluating the reliability of such estimates (i.e. validating flood risk models) is crucial. Here, we discuss the state of art of flood risk models validation with the aim of identifying policy and research recommendations towards promoting more common practice of validation. The main conclusions from this review can be summarised as the need of higher quality data to perform validation and of benchmark solutions.
Scira Menoni, Daniela Molinari, Francesco Ballio, Guido Minucci, Ouejdane Mejri, Funda Atun, Nicola Berni, and Claudia Pandolfo
Nat. Hazards Earth Syst. Sci., 16, 2783–2797, https://doi.org/10.5194/nhess-16-2783-2016, https://doi.org/10.5194/nhess-16-2783-2016, 2016
Short summary
Short summary
This paper presents a model to develop multipurpose complete event scenarios, which address all the needs that arise after a disaster. In detail, such scenarios (i) are multisectoral, (ii) address the spatial scales relevant for the event at stake, (iii) consider the temporal evolution of damage and (iv) allow damage mechanisms to be understood. The model allows flood mitigation strategies to be optimized, as proved by its use in a case study.
Francesco Dottori, Rui Figueiredo, Mario L. V. Martina, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016, https://doi.org/10.5194/nhess-16-2577-2016, 2016
Short summary
Short summary
INSYDE is a new synthetic flood damage model based on a component-by-component analysis of physical damage to buildings. The damage functions are designed using an expert-based approach with the support of existing scientific and technical literature, loss adjustment studies, and damage surveys. The model structure is designed to be transparent and flexible, and therefore it can be applied in different geographical contexts.
D. Molinari, S. Menoni, G. T. Aronica, F. Ballio, N. Berni, C. Pandolfo, M. Stelluti, and G. Minucci
Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, https://doi.org/10.5194/nhess-14-901-2014, 2014
Cited articles
Abi-Samra, N. and Henry, W.: Actions Before... and After a Flood, IEEE Power
Energy Mag., 9, 52–58, https://doi.org/10.1109/MPE.2010.939950, 2011.
Abi-Samra, N. C. and Malcolm, W. P.: Extreme weather effects on power
systems, 2011 IEEE Power and Energy Society General Meeting, 24–28 July 2011, Detroit, MI,
USA, 1–5, https://doi.org/10.1109/PES.2011.6039594, 2011.
Albert, R., Albert, I., and Nakarado, G. L.: Structural vulnerability of the
North American power grid, Phys. Rev. E, 69, 025103,
https://doi.org/10.1103/PhysRevE.69.025103, 2004.
Albeverio, S., Jentsch, V., and Kantz, H. (Eds.): Extreme Events in Nature
and Society, The Frontiers Collection, Springer Berlin, Heidelberg,
https://doi.org/10.1007/3-540-28611-X, 2006.
Azzolin, A., Dueñas-Osorio, L., Cadini, F., and Zio, E.: Electrical and
topological drivers of the cascading failure dynamics in power transmission
networks, Reliab. Eng. Syst. Safe., 175, 196–206,
https://doi.org/10.1016/j.ress.2018.03.011, 2018.
Beatty, M., Phelps, S., Rohner, C., and Weisfuse, I.: Blackout of 2003:
Public Health Effects and Emergency Response, Public Health Rep., 121,
36–44, https://doi.org/10.1177/003335490612100109, 2006.
Billinton, R. and Allan, R.N.: Reliability Evaluation of Power Systems,
Springer New York, NY, https://doi.org/10.1007/978-1-4899-1860-4, 1996.
Boggess, J. M., Becker, G. W., and Mitchell, M. K.: Storm & flood
hardening of electrical substations, 2014 IEEE PES T&D Conference and
Exposition, Chicago, 14–17 April 2014, IL, USA, 1–5,
https://doi.org/10.1109/TDC.2014.6863387, 2014.
Bollinger, L. A. and Dijkema, G. P.: Evaluating infrastructure resilience to
extreme weather – the case of the Dutch electricity transmission network,
Eur. J. Transp. Infrastruct. Res., 16, 214–239,
https://doi.org/10.18757/ejtir.2016.16.1.3122, 2016.
Bombelli, I., Molinari, D., Asaridis, P., and Ballio, F.: The “Flood Damage Models” repository, in: 4th European Conference on Flood Risk Management, FLOODrisk 2020, 22–24 June 2021, Virtual Conference, https://doi.org/10.3311/FloodRisk2020.11.3, 2021.
Booth, J., Drye, M., Whensley, D., McFarlane, P., and McDonald, S.: Future
of flood resilience for electricity distribution infrastructure in Great
Britain, CIRED – Open Access Proceedings Journal, 2017, 1158–1161,
https://doi.org/10.1049/oap-cired.2017.0405, 2017.
Bragatto, T., Cresta, M., Cortesi, F., Gatta, F. M., Geri, A., Maccioni, M.,
and Paulucci, M.: Assessment and Possible Solution to Increase Resilience:
Flooding Threats in Terni Distribution Grid, Energies, 12, 744,
https://doi.org/10.3390/en12040744, 2019.
Bubeck, P., de Moel, H., Bouwer, L. M., and Aerts, J. C. J. H.: How reliable are projections of future flood damage?, Nat. Hazards Earth Syst. Sci., 11, 3293–3306, https://doi.org/10.5194/nhess-11-3293-2011, 2011.
Buriticá Cortés, J. A. M., Sánchez-Silva, M., and Tesfamariam,
S.: A hierarchy-based approach to seismic vulnerability assessment of bulk
power systems, Struct. Infrastruct. Eng., 11, 1352–1368,
https://doi.org/10.1080/15732479.2014.964732, 2015.
Chatterton, J., Clarke, C., Daly, E., Dawks, S., Elding, C., Fenn, T., Hick,
E., Miller, J., Morris, J., Ogunyoye, F., and Salado, R.: The costs and
impacts of the winter 2013 to 2014 floods, Environmental Agency, Bristol,
SC140025/R1, 2016.
Chovančíková, N. and Dvořák, Z.: Effect of a power
failure on rail transport, Transp. Res. Procedia, 40, 1289–1296,
https://doi.org/10.1016/j.trpro.2019.07.179, 2019.
Corwin, J. L. and Miles, W. T.: Impact assessment of the 1977 New York City
blackout. Final Report, U.S. Department of Energy, United States,
https://doi.org/10.2172/6584645, 1978.
Costa, R. E. and McAllister, G. R.: Substation flood program and flood
hardening case study, 2017 IEEE Power & Energy Society General Meeting,
16–20 July 2017, Chicago, IL, USA, 1–5,
https://doi.org/10.1109/PESGM.2017.8273905, 2017.
Dawson, R. J., Thompson, D., Johns, D., Wood, R., Darch, G., Chapman, L.,
Hughes, P. N., Watson, G. V. R., Paulson, K., Bell, S., Gosling, S. N.,
Powrie, W., and Hall, J. W.: A systems framework for national assessment of
climate risks to infrastructure, Philos. T. Roy. Soc. A, 376, 20170298,
https://doi.org/10.1098/rsta.2017.0298, 2018.
Doukas, H., Xidonas, P., Angelopoulos, D., Askounis, D., and Psarras, J.:
Distribution transformers failures: How does it cost? Evidence from Greece,
Energy Syst., 7, 601–613, https://doi.org/10.1007/s12667-015-0186-0, 2016.
Dullo, T. T., Darkwah, G. K., Gangrade, S., Morales-Hernández, M., Sharif, M. B., Kalyanapu, A. J., Kao, S.-C., Ghafoor, S., and Ashfaq, M.: Assessing climate-change-induced flood risk in the Conasauga River watershed: an application of ensemble hydrodynamic inundation modeling, Nat. Hazards Earth Syst. Sci., 21, 1739–1757, https://doi.org/10.5194/nhess-21-1739-2021, 2021.
Ebacher, G., Besner, M.-C., Prévost, M., and Allard, D.: Negative
Pressure Events in Water Distribution Systems: Public Health Risk Assessment
Based on Transient Analysis Outputs, Water Distribution Systems Analysis
2010, 471–483, https://doi.org/10.1061/41203(425)45, 2012.
Espinoza, S., Panteli, M., Mancarella, P., and Rudnick, H.: Multi-phase
assessment and adaptation of power systems resilience to natural hazards,
Electr. Power Syst. Res., 136, 352–361,
https://doi.org/10.1016/j.epsr.2016.03.019, 2016.
Farquharson, D., Jaramillo, P., and Samaras, C.: Sustainability implications
of electricity outages in sub-Saharan Africa, Nat. Sustain., 1, 589–597,
https://doi.org/10.1038/s41893-018-0151-8, 2018.
Feeney, C. J., Godfrey, S., Cooper, J. R., Plater, A. J., and Dodds, D.:
Forecasting riverine erosion hazards to electricity transmission towers
under increasing flow magnitudes, Clim. Risk Manag., 36, 100439,
https://doi.org/10.1016/j.crm.2022.100439, 2022.
FEMA: Hazus Flood Model Technical Manual, Federal Emergency Management
Agency, Washington, D.C., https://www.fema.gov/sites/default/files/documents/fema_hazus-flood-model-technical-manual-5-1.pdf (last access: 6 June 2023), 2022.
Ferrario, E., Pedroni, N., and Zio, E.: Evaluation of the robustness of
critical infrastructures by Hierarchical Graph representation, clustering
and Monte Carlo simulation, Reliab. Eng. Syst. Safe., 155, 78–96,
https://doi.org/10.1016/j.ress.2016.06.007, 2016.
Forzieri, G., Bianchi, A., Batista e Silva, F., Marin Herrera, M. A.,
Leblois, A., Lavalle, C., Aerts, J. C. J. H., and Feyen, L.: Escalating
impacts of climate extremes on critical infrastructures in Europe, Glob.
Environ. Change, 48, 97–107,
https://doi.org/10.1016/j.gloenvcha.2017.11.007, 2018.
Freese, J., Richmand, N. J., Silverman, R. A., Braun, J., Kaufman, B. J.,
and Clair, J.: Impact of Citywide Blackout on an Urban Emergency Medical
Services System, Prehosp. Disaster Med., 21, 372–378,
https://doi.org/10.1017/S1049023X00004064, 2006.
Gerl, T., Kreibich, H., Franco, G., Marechal, D., and Schröter, K.: A
Review of Flood Loss Models as Basis for Harmonization and Benchmarking, 11,
e0159791, PLoS One, https://doi.org/10.1371/journal.pone.0159791, 2016.
Greenwald, P. W., Ruherford, A. F., Green, R. A., and Giglio, J.: Emergency
Department Visits for Home Medical Device Failure during the 2003 North
America blackout, Acad. Emerg. Med., 11, 786–789,
https://doi.org/10.1197/j.aem.2003.12.032, 2004.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Hiete, M., Merz, M., Trinks, C., Grambs, W., and Thiede, T.:
Krisenmanagement Stromausfall Langfassung: Krisenmanagement bei einer
großflächigen Unterbrechung der Stromversorgung am Beispiel
Baden-Württemberg, Innenministerium Baden-Württemberg und Bundesamt
für Bevölkerungsschutz und Katastrophenhilfe, ISBN 978-3-86325-350-4, 2010.
Holden, R., Val, D. V., Burkhard, R., and Nodwell, S.: A network flow model
for interdependent infrastructures at the local scale, Saf. Sci., 53,
51–60, https://doi.org/10.1016/j.ssci.2012.08.013, 2013.
Holmes, C. E.: Queensland Floods Commission of Inquiry: Final report,
Brisbane, Australia, 2012.
Huitu, H., Kaustell, K., and Pastell, M.: The effect of storms on Finnish
dairy farms: electrical outage statistics and the effect on milk production,
Nat. Hazards, 104, 1695–1704, https://doi.org/10.1007/s11069-020-04240-0,
2020.
Huizinga, H. J.: Flood damage functions for EU member states, HKV
Consultants, Lelystad, the Netherlands, Implemented in the framework of the contract #382441-F1SC awarded by the European Commission – Joint Research Centre, 2007.
ICPR: Rhine Atlas, International Commission for the Protection of the Rhine, Koblenz, https://www.iksr.org/fileadmin/user_upload/Dokumente_de/Rhein-Atlas/english/English_text.pdf (last access: 6 June 2023), 2001.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2391 pp,
https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf (last access: 6 June 2023), 2021.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Karagiannis, G. M., Chondrogiannis, S., Krausmann, E., and Turksezer, Z. I.:
Power grid recovery after natural hazard impact, European Commission,
Luxemburg, EUR 28844 EN, 2017.
Karagiannis, G. M., Turksezer, Z.I., Alfrieri, L., Feyen, L., and Krausmann,
E.: Climate change and critical infrastructure – floods, Publications
Office of the European Union, Luxemburg, EUR 28855 EN, 2019.
Kemp, R.: Living without electricity: one city's experience of coping with
loss of power, Royal Academy of Engineering, London, ISBN 978-1-909327-26-9,
2016.
Kile, J. C., Skowronski, S., Miller, M. D., Reissman, S. G., Balaban, V.,
Klomp, R. W., Reissman, D. B., Mainzer, H. M., and Dannenberg, A. L.: Impact
of 2003 Power Outages on Public Health and Emergency Response, Prehosp.
Disaster Med., 20, 93–97, https://doi.org/10.1017/S1049023X00002259, 2005.
Klijn, F., Baan, P., De Bruijn, K., and Kwadijk, J.: Overstromingsrisico's
in Nederland in een veranderend klimaat: Verwachtingen, schattingen en
berekeningen voorhet project Nederland Later, WL delft hydraulics, Delft,
Q4290, 2007.
Klinger, C., Landeg, O., and Murray, V.: Power Outages, Extreme Events and
Health: A Systematic Review of the Literature from 2011–2012, PLoS Curr.,
6, ecurrents.dis.04eb1dc5e73dd1377e05a10e9edde673,
https://doi.org/10.1371/currents.dis.04eb1dc5e73dd1377e05a10 e9edde673, 2014.
Koks, E., Pant, R., Thacker, S., and Hall, J. W.: Understanding Business
Disruption and Economic Losses Due to Electricity Failures and Flooding,
Int. J. Disaster Risk Sci., 10, 421–438,
https://doi.org/10.1007/s13753-019-00236-y, 2019.
Koks, E. E., van Ginkel, K. C. H., van Marle, M. J. E., and Lemnitzer, A.: Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event, Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, 2022.
Koskinas, A., Tegos, A., Tsira, P., Dimitriadis, P., Iliopoulou, T.,
Papanicolaou, P., Koutsoyiannis, D., and Williamson, T.: Insights into the
Oroville Dam 2017 Spillway Incident, Geosciences, 9, 37,
https://doi.org/10.3390/geosciences9010037, 2019.
Leandro, J., Cunneff, S., and Viernstein, L.: Resilience Modeling of Flood
Induced Electrical Distribution Network Failures: Munich, Germany, Front.
Earth Sci., 9, 572925, https://doi.org/10.3389/feart.2021.572925, 2021.
Lenz, L., Munyehirwe, A., Peters, J., and Sievert, M.: Does Large-Scale
Infrastructure Investment Alleviate Poverty? Impacts of Rwanda's Electricity
Access Roll-Out Program, World Dev., 89, 88–110,
https://doi.org/10.1016/j.worlddev.2016.08.003, 2017.
McCall, J., Macknick, J., and Hillman, D.: Water-Related Power Plant
Curtailments: An Overview of Incidents and Contributing Factors, National
Renewable Energy Laboratory, United States, https://doi.org/10.2172/1338176,
2016.
McMillan, D.: Disruptions at Gatwick Airport: Christmas Eve 2013, Report by
David McMillan to the Board of Gatwick Airport Limited, https://www.gatwickairport.com/globalassets/publicationfiles/business_and_community/all_public_publications/2014/mcmillan_report_feb14.pdf (last access: 6 June 2023), 2014.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Miles, S. B, Gallagher, H., and Huxford, C. J.: Restoration and Impacts from
the September 8, 2011, San Diego Power Outage, J. Infrastruct. Syst., 20,
05014002, https://doi.org/10.1061/(ASCE)IS.1943-555X.0000176, 2014.
Motter, A. and Lai, Y.-C.: Cascade-based attacks on complex networks, Phys.
Rev. E, 66, 065102, https://doi.org/10.1103/PhysRevE.66.065102, 2002.
Movahednia, M., Kargarian, A., Ozdemir, C. E., and Hagen, S. C.: Power Grid
Resilience Enhancement via Protecting Electrical Substations Against Flood
Hazards: A Stochastic Framework, IEEE Trans. Ind. Inform., 18, 2132–2143,
https://doi.org/10.1109/TII.2021.3100079, 2022.
Mukherjee, S., Nateghi, R., and Hastak, M.: A multi-hazard approach to
assess severe weather-induced major power outage risks in the U.S., Reliab.
Eng. Syst. Safe., 175, 283–305, https://doi.org/10.1016/j.ress.2018.03.015,
2018.
Murdock, H. J., de Bruijn, K. M., and Gersonius, B.: Assessment of Critical
Infrastructure Resilience to Flooding Using a Response Curve Approach,
Sustainability, 10, 3470, https://doi.org/10.3390/su10103470, 2018.
New York Power Authority, Puerto Rico Power Authority, Puerto Rico Energy
Commission, Consolidated Edison, Company of New York, Inc., Edison
International, Electric Power Research Institute, Long Island Power
Authority, Smart Electric Power Alliance, US Department of Energy,
Brookhaven National Laboratory, National Renewable Energy Laboratory,
Pacific Northwest National Laboratory, Grid Modernization Lab Consortium,
PSEG Long Island, Navigant Consulting, Inc.: Build Back Better: Reimagining
and Strengthening the Power Grid of Puerto Rico, https://www.governor.ny.gov/sites/default/files/atoms/files/PRERWG_Report_PR_Grid_Resiliency_Report.pdf (last access: 6 June 2023), 2017.
Nicolas, C., Rentschler, J., Potter van Loon, A., Oguah, S., Schweikert, A.,
Deinert, M., Koks, E., Arderne, C., Cubas, D., Li, J., and Ichikawa, E.:
Stronger Power: Improving Power Sector Resilience to Natural Hazards, World
Bank Group, Washington, D.C., https://documents1.worldbank.org/curated/en/200771560790885 170/pdf/Stronger-Power-Improving-Power-Sector-Resilience-to-Natural-Hazards.pdf (last access: 6 June 2023), 2019.
O'Reilly, G., Jrad, A., Nagarajan, R., Brown, T., and Conrad, S.: Critical
Infrastructure Analysis of Telecom for Natural Disasters, Networks 2006.
12th International Telecommunications Network Strategy and Planning
Symposium, 6–9 November 2006, New Delhi, India, 1–6,
https://doi.org/10.1109/NETWKS.2006.300396, 2006.
Ouyang, M.: Review on modeling and simulation of interdependent critical
infrastructure systems, Reliab. Eng. Syst. Safe., 121, 43–60,
https://doi.org/10.1016/j.ress.2013.06.040, 2014.
Pant, R., Thacker, S., Hall, J. W., Alderson, D., and Barr, S.: Critical
infrastructure impact assessment due to flood exposure, J. Flood Risk
Manag., 11, 22–33, https://doi.org/10.1111/jfr3.12288, 2018.
Panteli, M. and Mancarella, P.: Influence of extreme weather and climate
change on the resilience of power systems: Impacts and possible mitigation
strategies, Electr. Power Syst. Res., 127, 259–270,
https://doi.org/10.1016/j.epsr.2015.06.012, 2015.
Pasha, H. A. and Saleem, W.: The Impact and Cost of Power Load Shedding to Domestic Consumers, The Pakistan Development Review, 52, 355–372, https://doi.org/10.30541/v52i4Ipp.355-373, 2013.
Penning-Rowsell, E., Priest, S., Parker, D., Morris, J., Tunstall, S.,
Viavattene, C., Chatterton, J., and Owen, D.: Flood and Coastal Erosion Risk
Management: A Manual for Economic Appraisal, Routledge, London, ISBN 978-0-415-81515-4, 2013.
Petermann, T., Bradke, H., Lüllmann, A., Poetzsch, M., and Riehm, U.:
Was bei einem Blackout geschieht: Folgen eines langandauernden und
großräumigen Stromausfalls, Sigma Edition, Berlin, ISBN 978-3-8360-8133-7, 2011.
Pitt, M.: Learning lessons from the 2007 floods: An Independent Review by
Sir Michael Pitt, Cabinet Office, London, http://cip.management.dal.ca/publications/Pitt Review.pdf (last access: 6 June 2023), 2007.
Poljanšek, K., Bono, F., and Gutiérrez, E.: Seismic risk assessment
of interdependent critical infrastructure systems: The case of European gas
and electricity networks, Earthq. Eng. Struct. Dyn., 41, 61–79,
https://doi.org/10.1002/eqe.1118, 2012.
Powerlink Queensland: Annual Report 2010/11, Australia, https://documents.parliament.qld.gov.au/tp/2011/5311T5426.pdf (last access: 6 June 2023), 2011.
Pregnolato, M., Galasso, C., and Parisi, F.: A compendium of existing
vulnerability and fragility relationships for flood: preliminary results,
in: Proceedings of the 12th International Conference on Applications of
Statistics and Probability in Civil Engineering, ICASP12,
12–15 July 2015, Vancouver, Canada, 2015.
Prezant, D. J., Clair, J., Belyaev, S., Alleyne, D., Banauch, G. I., Davitt,
M., Vandervoorts, K., Kelly, K. J., Currie, B., and Kalkut, G.: Effects of
the August 2003 blackout on the New York City healthcare delivery system: A
lesson for disaster preparedness, Crit. Care Med., 33, S96–S101,
https://doi.org/10.1097/01.CCM.0000150956.90030.23, 2005.
Rentschler, J., Kornejew, M., Hallegate, S., Braese, J., and Obolensky, M.:
Underutilized Potential: The Business Costs of Unreliable Infrastructure in
Developing Countries, World Bank Group, Washington, D.C., https://doi.org/10.1596/1813-9450-8899, 2019a.
Rentschler, J., Obolensky, M., and Kornejew, M.: Candle in the Wind? Energy
System Resilience to Natural Shocks, World Bank Group, Washington, D.C., https://doi.org/10.1596/1813-9450-8897,
2019b.
Reuter, C.: Communication between Power Blackout and Mobile Network Overload, Int. J. Inf. Syst. Crisis Response Manag., 6, 38–53, https://doi.org/10.4018/ijiscram.2014040103, 2014.
Rinaldi, S. M., Peerenboom, J. P., and Kelly, T. K.: Identifying,
understanding, and analyzing critical infrastructure interdependencies, IEEE
Control Syst. Mag., 21, 11–25, https://doi.org/10.1109/37.969131, 2001.
Sánchez-Muñoz, D., Domínguez-García, J. L.,
Martínez-Gomariz, E., Russo, B., Stevens, J., and Pardo, M.: Electrical
Grid Risk Assessment Against Flooding in Barcelona and Bristol Cities,
Sustainability, 12, 1527, https://doi.org/10.3390/su12041527, 2020.
Sarachai, W., Ratnapinda, P., and Khumwichai, P.: Smart Notification System
for Detecting Fan Failure in Evaporative Cooling System of a Poultry Farm,
2019 Joint International Conference on Digital Arts, Media and Technology
with ECTI Northern Section Conference on Electrical, Electronics, Computer
and Telecommunications Engineering (ECTI DAMT-NCON), 30
January–2 February 2019, Nan, Thailand, 296–299,
https://doi.org/10.1109/ECTI-NCON.2019.8692266, 2019.
Sebastian, T., Lendering, K., Kothuis, B., Brand, N., Jonkman, B., van
Gelder, P., Godfroij, M., Kolen, B., Comes, T., Lhermitte, S., Meesters, K.,
van de Walle, B., Ebrahimi Fard, A., Cunningham, S., Khakzad, N., and
Nespeca, V.: Hurricane Harvey Report: A fact-finding effort in the direct
aftermath of Hurricane Harvey in the Greater Houston Region, Delft
University Publishers, Delft, https://pure.tudelft.nl/ws/portalfiles/portal/31283193/TU_Delft_Texas_Hurricane_Harvey_Report_Phase_I_20171108.pdf (last access: 6 June 2023), 2017.
Slegg, B. and Faiers, S.: Stage 2 review of Distribution Network Operators'
performance during the December 2013 storms, Energypeople, United Kingdom,
2014.
Srinivasan, T. N. and Gopi Rethinaraj, T. S.: Fukushima and thereafter:
Reassessment of risks of nuclear power, Energy Policy, 52, 726–736,
https://doi.org/10.1016/j.enpol.2012.10.036, 2013.
Sullivan, M., Collins, M. T., Schellenberg, J. A., and Larsen, P.: Estimating
Power System Interruption Costs: A Guidebook for Electric Utilities,
Lawrence Berkeley National Laboratory, Berkeley, https://eta-publications.lbl.gov/sites/default/files/interruption_cost_estimate_guidebook_final2_9july2018.pdf (last access: 6 June 2023), 2018.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., and Schröter, K.: The flood of June 2013 in Germany: how much do we know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, 2016.
UNDRR: Global Assessment Report on Disaster Risk Reduction, United Nations
Office for Disaster Risk Reduction, Geneva, Switzerland, ISBN 978-92-1-004180-5, 2019.
Vanneuville, W., Maddens, R., Collard, C., Bogaert, P., De Mayer, P., and
Antrop, M.: Impact op mens en economie t.g.v. overstromingen bekelen in het
licht van wijzigende hydraulische condities, omgenvingsfactoren en
klimatologische omstandigheden, Vakgroep Geografie, Universiteit Gent, Gent,
Belgium, MIRA/2006/02, 2006.
Vasenev, A., Montoya, L., and Ceccarelli, A.: A Hazus-Based Method for
Assessing Robustness of Electricity Supply to Critical Smart Grid Consumers
during Flood Events, 2016 11th International Conference on Availability,
Reliability and Security (ARES), Salzburg, Austria, 31 August 2016–2
September 2016, https://doi.org/10.1109/ARES.2016.12, 2016.
Wacker, G. and Billinton, R. G.: Farm losses resulting from electric service
interruptions-a Canadian survey, IEEE Trans. Power Syst., 4, 472–478,
https://doi.org/10.1109/59.193818, 1989a.
Wacker, G. and Billinton, R. G.: Customer cost of electric service
interruptions, Proc. IEEE, 77, 919–930, https://doi.org/10.1109/5.29332,
1989b.
Ward, D. M.: The effect of weather on grid systems and the reliability of
electricity supply, Clim. Change, 121, 103–113,
https://doi.org/10.1007/s10584-013-0916-z, 2013.
Zimmerman, R.: Mass transit infrastructure and urban health, J. Urban
Health, 82, 21–32, https://doi.org/10.1093/jurban/jti005, 2005.
Zio, E.: Challenges in the vulnerability and risk analysis of critical
infrastructures, Reliab. Eng. Syst. Safe., 152, 137–150,
https://doi.org/10.1016/j.ress.2016.02.009, 2016.
Short summary
This paper presents a conceptual model for the estimation of flood damage to power grids and reviews the available methodologies, to better understand current modelling approaches, challenges, and limitations. The model adopts an interdisciplinary and multi-scale evaluation approach to handle the complex damage mechanisms and capture the cascading effects. In doing so, it adapts to different geographical and economic contexts, allowing stakeholders to implement comprehensive damage assessments.
This paper presents a conceptual model for the estimation of flood damage to power grids and...