Articles | Volume 6
https://doi.org/10.5194/adgeo-6-69-2006
https://doi.org/10.5194/adgeo-6-69-2006
09 Jan 2006
09 Jan 2006

A synthesis of ENSO effects on drylands in Australia, North America and South America

M. Holmgren, P. Stapp, C. R. Dickman, C. Gracia, S. Graham, J. R. Gutiérrez, C. Hice, F. Jaksic, D. A. Kelt, M. Letnic, M. Lima, B. C. López, P. L. Meserve, W. B. Milstead, G. A. Polis, M. A. Previtali, M. Richter, S. Sabaté, and F. A. Squeo

Abstract. Fundamentally, El Niño Southern Oscillation (ENSO) is a climatic and oceanographic phenomenon, but it has profound effects on terrestrial ecosystems. Although the ecological effects of ENSO are becoming increasingly known from a wide range of terrestrial ecosystems (Holmgren et al., 2001), their impacts have been more intensively studied in arid and semiarid systems. In this brief communication, we summarize the main conclusions of a recent symposium on the effects of ENSO in these ecosystems, which was convened as part of the First Alexander von Humboldt International Conference on the El Niño Phenomenon and its Global Impact, in Guayaquil, Ecuador, from 16–20 May 2005. Participants in the symposium shared results and perspectives from research conducted in North and South America and Australia, regions where the ecological effects of ENSO have been studied in depth. Although the reports covered a wide array of organisms and ecological systems (Fig. 1), a recurring theme was the strong increase in rainfall associated with ENSO events in dry ecosystems (during the El Niño phase of the oscillation in the Americas and the La Niña phase in Australia). Because inter-annual variability in precipitation is such a strong determinant of productivity in arid and semiarid ecosystems, increased ENSO rainfall is crucial for plant recruitment, productivity and diversity in these ecosystems. Several long-term studies show that this pulse in primary productivity causes a subsequent increase in herbivores, followed by an increase in carnivores, with consequences for changes in ecosystem structure and functioning that can be quite complex.