CBS: Zonnestroom; vermogen zonnepanelen woningen, wijken en buurten, CBS [data set],
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/85447NED/table?ts=1688108818772 (last access: 30 June 2023), 2020.
a,
b
Center for Climate and Energy Solutions: Outcomes of the U.N. Climate Change
Conference in Paris, Tech. rep., 6 pp., Center for Climate and Energy Solutions,
https://www.c2es.org/wp-content/uploads/2019/12/cop-25-madrid-summary-1.pdf (last access: 30 June 2023), 2015. a
Costa-Campi, M. T., Davi-Arderius, D., and Trujillo-Baute, E.: Analysing electricity flows and congestions: Looking at locational patterns, Energ. Policy, 156, 112351,
https://doi.org/10.1016/j.enpol.2021.112351, 2021.
a
den Ouden, B., Kerkhoven, J., Warnaars, J., Terwel, R., Coenen, M., Verboon, T., Tiihonen, T., and Koot, A.: Klimaatneutrale energiescenario's 2050:
Scenariostudie ten behoeve van de integrale infrastructuurverkenning 2030-2050, Tech. rep. no. 61689, 146 pp.,
https://www.rijksoverheid.nl/documenten/rapporten/2020/03/31/klimaatneutrale-energiescenarios-2050 (last access: 30 June 2023), 2020.
a,
b,
c,
d
Di Grazia, S. and Tina, G. M.: Optimal site selection for floating photovoltaic systems based on Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): a case study, International Journal of Sustainable Energy, online first,
https://doi.org/10.1080/14786451.2023.2167999, 2023.
a
Erbs, D. G., Klein, S. A., and Duffie, J. A.: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation, Sol. Energy, 28, 293–302,
https://doi.org/10.1016/0038-092X(82)90302-4, 1982.
a
Folkerts, W., van Sark, W., de Keizer, C., van Hooff, W., and van den Donker, M.: Roadmap PV Systemen en Toepassingen, Tech. rep., 46 pp.,
https://www.uu.nl/sites/default/files/roadmap-pv-systemen-en-toepassingen-final.pdf (last access: 30 June 2023), 2017.
a,
b,
c
Geodan: ASM2 Energy Transition,
https://pico.geodan.nl/asm2/#/scenario (last access: 30 June 2023), 2021a a
Geodan: ASM2 Energy Transition Viewer,
https://pico.geodan.nl/asm2/#/viewer (last access: 30 June 2023), 2021b. a
Gils, H. C., Pregger, T., Flachsbarth, F., Jentsch, M., and Dierstein, C.: Comparison of spatially and temporally resolved energy system models with a focus on Germany's future power supply, Appl. Energ., 255, 113889,
https://doi.org/10.1016/j.apenergy.2019.113889, 2019.
a
IEA: World Energy Outlook 2020, Tech. rep., 464 pp., IEA,
https://www.oecd-ilibrary.org/energy/world-energy-outlook-2020_557a761b-en (last access: 30 June 2023), 2020. a
Ineichen, P.: Global irradiance on tilted and oriented planes: model validations, University of Geneva,
https://archive-ouverte.unige.ch/unige:23519 (last access: 30 June 2023), 2011. a
Kadaster: Basisregistratie Adressen en Gebouwen (BAG), PDOK [data set],
https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1 (last access: 30 June 2023), 2017a.
a,
b
Kadaster: Basisregistratie Grootschalige Topografie (BGT), PDOK [data set],
https://www.pdok.nl/introductie/-/article/basisregistratie-grootschalige-topografie-bgt- (last access: 30 June 2023), 2017b.
a,
b,
c
Kalavasta: Uitwerking van een 2030 scenario op basis van het ontwerp Klimaatakkoord en vast en voorgenomen beleid, Tech. rep., 15 pp.,
https://kalavasta.com/assets/reports/Kalavasta2030KEAenergiesysteemNL.pdf (last access: 30 June 2023),
2019.
a,
b
Kausika, B. B., Dolla, O., and Van Sark, W. G.: Assessment of policy based residential solar PV potential using GIS-based multicriteria decision analysis: A case study of Apeldoorn, The Netherlands, Enrgy Proced., 134, 110–120,
https://doi.org/10.1016/J.EGYPRO.2017.09.544, 2017.
a
KNMI: Uurgegevens van het weer in Nederland, KNMI [data set],
https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens (last access: 30 June 2023), 2018. a
KNMI: MSG-CPP: clouds, radiation and precipitation from Meteosat,
https://msgcpp.knmi.nl/ (last access: 30 June 2023), 2022. a
KNMI: Klimaatviewer: gemiddelde globale straling,
https://www.knmi.nl/klimaat-viewer/kaarten/zon/gemiddelde-globale-straling/jaar/Periode_1991-2020 (last access: 30 June 2023), 2023.
a,
b
Kockel, C., Nolting, L., Priesmann, J., and Praktiknjo, A.: Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case, Appl. Energ., 308, 118226,
https://doi.org/10.1016/j.apenergy.2021.118226, 2022.
a
Lee, M., Hong, T., Jeong, K., and Kim, J.: A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity, Appl. Energ., 232, 640–656,
https://doi.org/10.1016/j.apenergy.2018.09.176, 2018.
a
Litjens, G. B., Worrell, E., and van Sark, W. G.: Influence of demand patterns on the optimal orientation of photovoltaic systems, Sol. Energy, 155, 1002–1014,
https://doi.org/10.1016/j.solener.2017.07.006, 2017.
a
Mensour, O. N., El Ghazzani, B., Hlimi, B., and Ihlal, A.: A geographical information system-based multi-criteria method for the evaluation of solar farms locations: A case study in Souss-Massa area, southern Morocco, Energy, 182, 900–919,
https://doi.org/10.1016/j.energy.2019.06.063, 2019.
a
Moraitis, P., Kausika, B. B., Nortier, N., and Van Sark, W.: Urban environment and solar PV performance: the case of the Netherlands, Energies, 11, 1333,
https://doi.org/10.3390/en11061333, 2018.
a,
b,
c
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383,
https://doi.org/10.5194/essd-13-4349-2021, 2021.
a
Netbeheer Nederland: Aanbieding integrale infrastructuurverkenning 2030-2050,
https://www.rijksoverheid.nl/documenten/brieven/2020/04/02/aanbieding-integrale-infrastructuurverkenning-2030-2050 (last access: 30 June 2023), 2020.
a,
b
Nortier, N., Löwenthal, K., Luxembourg, S., van der Neut, A., Mewe, A., and van Sark, W.: Spatially resolved generation profiles for onshore and offshore wind turbines: A case study of four Dutch energy transition scenarios, Renewable and Sustainable Energy Transition, 2, 100037,
https://doi.org/10.1016/J.RSET.2022.100037, 2022.
a
Perez, R., Ineichen, P., Seals, R., Michalsky, J., and Stewart, R.: Modeling daylight availability and irradiance components from direct and global irradiance, Sol. Energy, 44, 271–289,
https://doi.org/10.1016/0038-092X(90)90055-H, 1990.
a
Quintel Intelligence: Energy transition model,
https://energytransitionmodel.com/ (last access: 30 June 2023), 2022. a
Ramirez Camargo, L. and Schmidt, J.: Simulation of multi-annual time series of solar photovoltaic power: Is the ERA5-land reanalysis the next big step?, Sustainable Energy Technologies and Assessments, 42, 100829,
https://doi.org/10.1016/J.SETA.2020.100829, 2020.
a
Rijksoverheid: Klimaatakkoord, Tech. rep., 239 pp.,
https://www.klimaatakkoord.nl/binaries/klimaatakkoord/documenten/publicaties/2019/06/28/klimaatakkoord/klimaatakkoord.pdf (last access: 30 June 2023), 2019.
a,
b,
c
Rijkswaterstaat: RWS dijkringlijnen (actueel), Overheid [data set],
https://data.overheid.nl/dataset/d1f6d623-d728-4130-a8b2-68793577f795 (last access: 30 June 2023), 2020. a
RVO: Advanced Scenario Management – Phase 2,
https://www.rvo.nl/subsidies-regelingen/projecten/advanced-scenario-management-phase-2 (last access: 30 June 2023), 2016. a
RVO: Feiten en cijfers SDE(+)(+), RVO [data set],
https://www.rvo.nl/subsidies-financiering/sde/aanvragen/feiten-en-cijfers#projecten-in-beheer (last access: 30 June 2023), 2021.
a,
b,
c
Sijmons, D.: Energie & Ruimte: een nationaal perspectief, Vereniging Deltametropool, Rotterdam, ISBN: 978-90-76630-21-2, 2017.
a,
b
Staudt, P., Rausch, B., Gärttner, J., and Weinhardt, C.: Predicting transmission line congestion in energy systems with a high share of renewables, 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019, IEEE, 1–6,
https://doi.org/10.1109/PTC.2019.8810527, 2019.
a
Tina, G. M., Cazzaniga, R., Rosa-Clot, M., and Rosa-Clot, P.: Geographic and technical floating photovoltaic potential, Therm. Sci., 22, 831–841,
https://doi.org/10.2298/tsci170929017t, 2018.
a
van der Kam, M. J., Meelen, A. A. H., van Sark, W. G. J. H. M., and Alkemade, F.: Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition, Energy Research & Social Science, 46, 68–85,
https://doi.org/10.1016/j.erss.2018.06.003, 2018.
a
van Westering, W. and Hellendoorn, H.: Low voltage power grid congestion reduction using a community battery: Design principles, control and experimental validation, Int. J. Elec. Power, 114, 105349,
https://doi.org/10.1016/j.ijepes.2019.06.007, 2020.
a
Yang, Y., Campana, P. E., Stridh, B., and Yan, J.: Potential analysis of roof-mounted solar photovoltaics in Sweden, Appl. Energ., 279, 115786,
https://doi.org/10.1016/j.apenergy.2020.115786, 2020.
a
Zhang, Y., Ren, J., Pu, Y., and Wang, P.: Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis, Renew. Energ., 149, 577–586,
https://doi.org/10.1016/j.renene.2019.12.071, 2020.
a