Assessment of frost damage risk in a historic masonry wall due to climate change
Department of Built Environment, Oslo Metropolitan University-OsloMet,
St. Olavs Plass 4, 0130 Oslo, Norway
Guilherme Barreto Arez Coelho
Department of Built Environment, Oslo Metropolitan University-OsloMet,
St. Olavs Plass 4, 0130 Oslo, Norway
Dimitrios Kraniotis
Department of Built Environment, Oslo Metropolitan University-OsloMet,
St. Olavs Plass 4, 0130 Oslo, Norway
Cited articles
Al-Omari, A., Brunetaud, X., Beck, K., and Al-Mukhtar, M.: Effect of thermal
stress, condensation and freezing–thawing action on the degradation of
stones on the Castle of Chambord, France, Environ. Earth Sci., 71,
3977–3989, https://doi.org/10.1007/s12665-013-2782-4, 2014.
Bertolin, C. and Camuffo, D.: Deliverable 5.2 Climate change impact on
movable and immovable cultural heritage throughout Europe, 2014:
https://www.climateforculture.eu/index.php?inhalt=furtherresources.projectresults,
last access: 20 October 2022.
Brimblecombe, P. and Camuffo, D.: Long term damage to the built environment,
The effects of air pollution on the built environment, 2, Imperial College
Press, 1–30, https://doi.org/10.1142/p243, 2003.
Brimblecombe, P., Grossi, C. M., and Harris, I.: Climate change critical to
cultural heritage, in: Survival and sustainability, edited by:
Gökçekus, H., Türker, U., LaMoreaux, J., Springer, Berlin,
Heidelberg, Germany, 195–205,
https://doi.org/10.1007/978-3-540-95991-5_ 20, 2010.
Califano, A., Baiesi, M., and Bertolin, C.: Analysing the Main Standards for
Climate-Induced Mechanical Risk in Heritage Wooden Structures: The Case of
the Ringebu and Heddal Stave Churches (Norway), Atmosphere, 13, 791,
https://doi.org/10.3390/atmos13050791, 2022.
Camuffo, D.: Microclimate for Cultural Heritage Conservation, Restoration
and Maintenance of Indoor and Outdoor Monuments, Elsevier, New York, USA,
519 pp., https://doi.org/10.1016/C2013-0-00676-7, 2014.
CEN, EN 15026: Hygrothermal Performance of Building Components and Building
Elements – Assessment of Moisture Transfer by Numerical Simulation, CEN,
Brussels, Belgium, ISBN 9780580547416, 2007.
Choidis, P., Tsikaloudaki, K., and Kraniotis, D.: Hygrothermal performance
of log walls in a building of 18th century and prediction of climate change
impact on biological deterioration, in: E3S Web of Conferences: 12th Nordic
Symposium on Building Physics (NSB 2020), 172, 15006,
https://doi.org/10.1051/e3sconf/202017215006, 2020.
Choidis, P., Kraniotis, D., Lehtonen, I., and Hellum, B.: A Modelling
Approach for the Assessment of Climate Change Impact on the Fungal
Colonization of Historic Timber Structures, Forests, 12, 819,
https://doi.org/10.3390/f12070819, 2021.
Copernicus Climate Change Service: ERA5 Hourly Data on Single Levels from
1979 to Present:
https://cds.climate.copernicus.eu/cdsapp#/dataset/reanalysis-era5-single-levels?tab=form [data set], last access: 22 July 2022.
Davidson, G. and Nye, J. F.: A photoelastic study of ice pressure in rock
cracks, Cold Reg. Sci. Technol., 11, 141–153,
https://doi.org/10.1016/0165-232X(85)90013-8, 1985.
De Rose, D., Pearson, N., Mensinga, P., and Straube, J.: Towards a limit states approach to insulating solid masonry walls in a cold climate, in: Proceedings of the 14th Canadian Conference on Building Science and Technology, Toronto, Canada, 28–30 October 2014, 521–530, 2014.
Delgado, J., Ramos, N. M., Barreira, E., and De Freitas, V. P.: A critical
review of hygrothermal models used in porous building materials, J. Porous
Media, 13, 221–234, https://doi.org/10.1615/JPorMedia.v13.i3.30, 2010.
Fagerlund, G.: The critical degree of saturation method of assessing the
freeze/thaw resistance of concrete, Mat. Constr., 10, 217–229,
https://doi.org/10.1007/BF02478693, 1977a.
Fagerlund, G.: The international cooperative test of the critical degree of
saturation method of assessing the freeze/thaw resistance of concrete, Mat.
Constr., 10, 231–253, https://doi.org/10.1007/BF02478694, 1977b.
French, H. M.: The periglacial environment, Fourth Edition, Wiley-Blackwell, Hoboken, New Jersey, USA, 544 pp., ISBN 9781119132783, 2017.
Gaur, A. and Lacasse, M.: Climate Data to Support the Adaptation of
Buildings to Climate Change in Canada, Data, 7, 42,
https://doi.org/10.3390/data7040042, 2022.
Gaur, A., Lacasse, M., and Armstrong, M.: Climate Data to Undertake
Hygrothermal and Whole Building Simulations Under Projected Climate Change
Influences for 11 Canadian Cities, Data, 4, 72,
https://doi.org/10.3390/data4020072, 2019.
Germinario, L., Coletti, C., Girardi, G., Maritan, L., Praticelli, N.,
Sassi, R., Solstad, J., and Mazzoli, C.: Microclimate and Weathering in
Cultural Heritage: Design of a Monitoring Apparatus for Field Exposure
Tests, Heritage, 5, 3211–3219, https://doi.org/10.3390/heritage5040165,
2022.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., and Fieg, K.: Climate
and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the
Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst.,
5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Grossi, C. M., Brimblecombe, P., and Harris, I.: Predicting long term
freeze–thaw risks on Europe built heritage and archaeological sites in a
changing climate, Sci. Total Environ., 377, 273–281,
https://doi.org/10.1016/j.scitotenv.2007.02.014, 2007.
Hao, L., Herrera, D., Troi, A., Petitta, M., Matiu, M., and Del Pero, C.:
Assessing the impact of climate change on energy retrofit of alpine historic
buildings: consequences for the hygrothermal performance, in: IOP Conference
Series: Earth and Environmental Science, Sustainability in the built
environment for climate change mitigation, Thessaloniki, Greece, 23–25
October 2019, 410, https://doi.org/10.1088/1755-1315/410/1/012050, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and
Simmons A.: The ERA5 global reanalysis, Q. J. R. Meteorolog. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020.
IPCC: Climate Change 2007: Synthesis Report, Contribution of Working Groups
I, II and III to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A., IPCC, Geneva, Switzerland, 104 pp., 2007.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change edited by: Core Writing Team, Pachauri, R. K., and Reisinger, A.,
IPCC, Geneva, Switzerland, 151 pp., 2014.
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate
model REMO, Meteorol. Atmos. Phys., 63, 119–129,
https://doi.org/10.1007/BF01025368, 1997.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., and Georgievski, G.:
EURO-CORDEX: new high-resolution climate change projections for European
impact research, Reg. Environ. Change, 14, 563–578,
https://doi.org/10.1007/s10113-013-0499-2, 2014.
Karagiozis, A., Hadjisophocleous, G., and Cao, S.: Wind-driven rain
distributions on two buildings, J. Wind Eng. Ind. Aerodyn., 67, 559–572,
https://doi.org/10.1016/S0167-6105(97)00100-1, 1997.
Karagiozis, A., Künzel, H., and Holm, A.: WUFI-ORNL/IBP – A North
American hygrothermal model, in: Proceedings of the 8th International
Conference on Thermal Performance of the Exterior Envelopes of Whole
Buildings, Buildings VIII, Clearwater Beach, Florida, USA, 2–7 December 2001.
Kaslegard, A. S.: Climate change and cultural heritage in the Nordic countries, Norden, Copenhagen, Denmark, 55 pp., ISBN 9789289321952, 2011.
Kočí, J., Maděra, J., and Černý, R.: Generation of a
critical weather year for hygrothermal simulations using partial weather
data sets, Build. Environ., 76, 54–61,
https://doi.org/10.1016/j.buildenv.2014.03.006, 2014.
Kočí, J., Maděra, J., Keppert, M., and Černý, R.:
Damage functions for the cold regions and their applications in hygrothermal
simulations of different types of building structures, Cold Reg. Sci.
Technol., 135, 1–7, https://doi.org/10.1016/j.coldregions.2016.12.004, 2017.
Künzel, H. M.: Simultaneous heat and moisture transport in building
components, One-and two-dimensional calculation using simple parameters,
Fraunhofer Institute of Building Physics, Stuttgart, Germany, 65 pp., 1995.
Lehtonen, I., Ruosteenoja, K., and Jylhä, K.: Projected changes in
European extreme precipitation indices on the basis of global and regional
climate model ensembles, Int. J. Climatol., 34, 1208–1222,
https://doi.org/10.1002/joc.3758, 2014.
Leissner, J., Kilian, R., Kotova, L., Jacob, D., Mikolajewicz, U.,
Broström, T., Ashley-Smith, J., Schellen, H. L., Martens, M., and van
Schijndel, J.: Climate for Culture: assessing the impact of climate change
on the future indoor climate in historic buildings using simulations, Herit
Sci., 3, 1–15, https://doi.org/10.1186/s40494-015-0067-9, 2015.
Lisø, K. R., Kvande, T., Hygen, H. O., Thue, J. V., and Harstveit, K.: A
frost decay exposure index for porous, mineral building materials, Build.
Environ., 42, 3547–3555, https://doi.org/10.1016/j.buildenv.2006.10.022,
2007.
Loli, A. and Bertolin, C.: Indoor multi-risk scenarios of climate change
effects on building materials in Scandinavian countries, Geosci., 8, 347,
https://doi.org/10.3390/geosciences8090347, 2018.
Mantha, P. and Arena, L. B.: A systematic approach to hygrothermal modeling
and compliance with failure criteria using WUFI, in: Proceedings of SimBuild
Conference: 5th conference of IBPSA USA, 5, 414–422, 2012.
Matsuoka, N.: Mechanisms of rock breakdown by frost action: An experimental
approach, Cold Reg. Sci. Technol., 17, 253–270,
https://doi.org/10.1016/S0165-232X(05)80005-9, 1990.
Matsuoka, N.: Microgelivation versus macrogelivation: towards bridging the
gap between laboratory and field frost weathering, Permafrost
Periglac., 12, 299–313, https://doi.org/10.1002/ppp.393, 2001.
Mensinga, P., Straube, J., and Schumacher, C.: Assessing the freeze-thaw
resistance of clay brick for interior insulation retrofit projects, in:
Proceedings of the 11th International Conference on Thermal Performance of
the Exterior Envelopes of Whole Buildings, Buildings XI, ASHRAE/DOE
Conference, Clearwater Beach, Florida, USA, 5–9 December 2010, 2–7, 2010.
NCI ESGF Node: https://esgf.nci.org.au/search/esgf-nci/ [data set], last access: 22
July 2022.
Nelson, F. E. and Outcalt, S. I.: A Computational Method for Prediction and
Regionalization of Permafrost, Arct. Alp. Res., 19, 279–288,
https://doi.org/10.1080/00040851.1987.12002602, 1987.
Ollier, C.: Weathering Geomorphology Texts, First Edition, Clayton, K.M. (editor), Oliver and Boyd, Edinburg, Scotland, ISBN 9780050017951, 1969.
Pakkala, T. A., Köliö, A., Lahdensivu, J., and Kiviste, M.:
Durability demands related to frost attack for Finnish concrete buildings in
changing climate, Build. Environ., 82, 27–41,
https://doi.org/10.1016/j.buildenv.2014.07.028, 2014.
Prepens, M.: Der Einfluß von Beschichtungen und Imprägnierungen auf die Frost- und Witterungsbeständigkeit von Verblendmauerwerk aus Kalksandsteinen, Ph.D. thesis, University of Hannover, Germany, 1991.
Räisänen, J. and Ylhäisi, J. S.: CO2-induced climate change in
northern Europe: CMIP2 versus CMIP3 versus CMIP5, Clim. Dynam., 45, 1877–1897,
https://doi.org/10.1007/s00382-014-2440-x, 2015.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A scenario of comparatively
high greenhouse gas emissions, Clim. Change, 109, 33-57,
https://doi.org/10.1007/s10584-011-0149-y, 2011.
Sabbioni, C., Brimblecombe, P., and Cassar, M. (Eds.): The atlas of climate change impact on European cultural heritage: scientific analysis and management strategies, Anthem Press, London, UK, 160 pp., ISBN 9781843317982, 2010.
Sahyoun, S., Ge, H., Defo, M., and Lacasse, M.: Evaluating the potential of
freeze-thaw damage in internally insulated masonry under climate change
using different models, in: MATEC Web of Conferences 282, 4th Central
European Symposium on Building Physics, Prague, Czech Republic, 2–5
September 2019, 02081, https://doi.org/10.1051/matecconf/201928202081, 2019.
Sahyoun, S., Wang, L., Ge, H., Defo, M., and Lacasse, M.: Durability of
Internally Insulated Historical Solid Masonry Under Future Climates: A
Stochastic Approach, in: Current Topics and Trends on Durability of Building
Materials and Components, XV International Conference on Durability of
Building Materials and Components, Barcelona, Spain, 20–23 October 2020,
https://doi.org/10.23967/dbmc.2020.044, 2020.
Said, M., Demers, R., and McSheffrey, L.: Hygrothermal performance of a
masonry wall retrofitted with interior insulation, in: Research in Building
Physics, CRC Press, 445–454, 2020.
Salvini, S., Bertoncello, R., Coletti, C., Germinario, L., Maritan, L.,
Massironi, M., Pozzobon, R., and Mazzoli, C.: Recession rate of carbonate
rocks used in cultural heritage: Textural control assessed by accelerated
ageing tests, J. Cult. Heritage, 57, 154–164,
https://doi.org/10.1016/j.culher.2022.08.010, 2022.
Sedlbauer, K. and Kunzel, H.: Frost damage of masonry walls-a hygrothermal
analysis by computer simulations, J. Therm. Envelope Build. Sci., 23,
277–281, 2000.
Straube, J. and Schumacher, C.: Assessing the durability impacts of energy efficient enclosure upgrades using hygrothermal modeling, WTA-J., 2, 197–222, 2006.
Straube, J., Ueno, K., and Schumacher, C.: Measure guideline: internal
insulation of masonry walls, National Renewable Energy Lab. (NREL), Golden,
CO, United States, https://doi.org/10.2172/1048975, 2012.
Straube, J. and Burnett, E.: Building science for building enclosures, Building Science Press, Westford, Massachusetts, USA, ISBN 9780975512746, 2005.
Ueno, K., Van Straaten, R., and Schumacher, C.: Interior insulation of mass masonry walls: Joist monitoring, material test optimization, salt effects, Report for the U.S. Department of Energy’s Building America Program, Building Science Corporation, 88 pp., 2013a.
Ueno, K., Straube, J., and Van Straaten, R.: Field monitoring and simulation of a historic mass masonry building retrofitted with interior insulation, in: Proceedings of the 12th International Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings, Clearwater, Florida, USA, 1–5 December 2013, 56-71, ISBN 9781510827837, 2013b.
Ueno, K., Kerrigan, P., Wytrykowska, H., and Van Straaten, R.: Retrofit of a multifamily mass masonry building in New England, Report for the U.S. Department of Energy’s Building America Program, Building Science Corporation, United States, 162 pp., https://doi.org/10.2172/1090969, 2013c.
Van Aarle, M., Schellen, H., and van Schijndel, J.: Hygro thermal simulation
to predict the risk of frost damage in masonry; effects of climate change,
Energy Procedia, 78, 2536–2541,
https://doi.org/10.1016/j.egypro.2015.11.268, 2015.
Van Straaten, R., Trainor, P. T., and Schumacher, M. C.: Critical
Freeze/Thaw Saturation Measurement of In-Service Masonry, in: Proceedings of
the XIII International Conference on Thermal Performance of the Exterior
Envelopes of Whole Buildings, Buildings XIII, Clearwater Beach, Florida,
USA, 4–8 December 2016, 177–186, 2016.
Vandemeulebroucke, I., Calle, K., Caluwaerts, S., De Kock, T., and Van Den
Bossche, N.: Does historic construction suffer or benefit from the urban
heat island effect in Ghent and global warming across Europe?, Can. J. Civ.
Eng., 46, 1032–1042, https://doi.org/10.1139/cjce-2018-0594, 2019.
Vandemeulebroucke, I., Caluwaerts, S., and Van Den Bossche, N.: Freeze-thaw
risk in solid masonry: are “hygrothermal response based” analyses mandatory
when studying the sensitivity of building envelopes to climate change?, in:
Current Topics and Trends on Durability of Building Materials and
Components, XV International Conference on Durability of Building Materials
and Components, Barcelona, Spain, 20–23 October 2020, 67–74,
https://doi.org/10.23967/dbmc.2020.070, 2020.
Vandemeulebroucke, I., Caluwaerts, S., and Van Den Bossche, N.: Factorial
Study on the Impact of Climate Change on Freeze-Thaw Damage, Mould Growth
and Wood Decay in Solid Masonry Walls in Brussels, Buildings, 11, 134,
https://doi.org/10.3390/buildings11030134, 2021a.
Vandemeulebroucke, I., Defo, M., Lacasse, M., Caluwaerts, S., and Van Den
Bossche, N.: Canadian initial-condition climate ensemble: Hygrothermal
simulation on wood-stud and retrofitted historical masonry, Build. Environ.,
187, 107318, https://doi.org/10.1016/j.buildenv.2020.107318, 2021b.
Viles, H. A.: Implications of future climate change for stone deterioration,
in: Natural Stone, Weathering Phenomena, Conservation Strategies and Case
Studies, J. Geol. Soc. London, 407–418,
https://doi.org/10.1144/GSL.SP.2002.205.01.29, 2002.
Washburn, A. L.: Geocryology: A survey of periglacial processes and environments, First Edition, Edward Arnold, London, UK, 406 pp., ISBN 9780713161199, 1979.
Washburn, A. L.: Geocryology: A survey of periglacial processes and environments, First Edition, Edward Arnold, London, UK, 406 pp., ISBN 9780713161199, 1979.
Zhou, X., Derome, D., and Carmeliet, J.: Hygrothermal modeling and
evaluation of freeze-thaw damage risk of masonry walls retrofitted with
internal insulation, Build. Environ., 125, 285–298,
https://doi.org/10.1016/j.buildenv.2017.08.001, 2017.
Zhou, X., Carmeliet, J., and Derome, D.: Assessment of risk of freeze-thaw
damage in internally insulated masonry in a changing climate, Build.
Environ., 175, 106773, https://doi.org/10.1016/j.buildenv.2020.106773, 2020.
Short summary
The overall impact of climate change is a decrease in the frost damage risk of masonry walls in Tønsberg, Norway. However, an increased frost damage risk is expected from the present to the future conditions for the walls of small, conditioned rooms with higher driving rain load and lower solar radiation gains. Moreover, the freeze-thaw events experienced by the masonry walls of unconditioned, leaky buildings are 20 times more than the ones for the small, conditioned rooms.
The overall impact of climate change is a decrease in the frost damage risk of masonry walls in...