Spatial distribution of Mesozoic deposits and their temperature ranges within the Weser-Wiehengebirge Syncline of the inverted Lower Saxony Basin, Minden area, Germany
Alexander Jüstel
CORRESPONDING AUTHOR
Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany
Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
Olga Knaub
Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany
Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
Frank Strozyk
Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany
Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
Gregor Bussmann
Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Am Hochschulcampus 1, 44801 Bochum, Germany
Florian Wellmann
Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany
Institute for Computational Geoscience, Geothermics and Reservoir Geophysics, RWTH Aachen University, Mathieustraße 30, 52074 Aachen, Germany
Peter Kukla
Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Kockerellstraße 17, 52062 Aachen, Germany
Geological Institute, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
Related authors
No articles found.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Mark G. Rowan, Janos L. Urai, J. Carl Fiduk, and Peter A. Kukla
Solid Earth, 10, 987–1013, https://doi.org/10.5194/se-10-987-2019, https://doi.org/10.5194/se-10-987-2019, 2019
Short summary
Short summary
Ancient evaporite sequences were deposited as interlayered rocksalt, other evaporites, and non-evaporite rocks that have enormous differences in strength. Whereas the ductile layers flow during deformation, strong layers are folded and/or torn apart, with the intrasalt deformation dependent on the mode and history of salt tectonics. This has important implications for accurately imaging and interpreting subsurface seismic data and for drilling wells through evaporite sequences.
Rebecca Möller, Marco Möller, Peter A. Kukla, and Christoph Schneider
Earth Syst. Sci. Data, 10, 53–60, https://doi.org/10.5194/essd-10-53-2018, https://doi.org/10.5194/essd-10-53-2018, 2018
Short summary
Short summary
Deposits of volcanic tephra alter the energy balance at the surface of a glacier. The effects reach from intensified melt to complete insulation, mainly depending on tephra thickness. Data from a field experiment on Iceland reveal an additional minor dependency on tephra type and suggest a substantially different behavior of tephra-covered snowpacks than of tephra-covered glacier ice. The related 50-day dataset of hourly records can readily be used for model calibration and validation purposes.
Cited articles
Agemar, T., Schellschmidt, R., and Schulz, R.: Subsurface temperature
distribution in Germany, Geothermics, 44, 65–77,
https://doi.org/10.1016/j.geothermics.2012.07.002, 2012. a, b
Agemar, T., Weber, J., and Schulz, R.: Deep Geothermal Energy Production in
Germany, Energies, 7, 4397–4416, https://doi.org/10.3390/en7074397, 2014. a, b
Ahlrichs, N., Hübscher, C., Noack, V., Schnabel, M., Damm, V., and Krawczyk,
C.: Structural Evolution at the Northeast North German Basin Margin: From
Initial Triassic Salt Movement to Late Cretaceous-Cenozoic Remobilization,
Tectonics, 39, e2019TC005927, https://doi.org/10.1029/2019TC005927, 2020. a, b, c, d, e, f
Arndt, M.: 3D modelling of the Lower Carboniferous (Dinantian) as an indicator
for the deep geothermal potential in North Rhine-Westphalia (NRW, Germany),
Z. Dtsch. Geol. Gesell., 172, 307–324,
https://doi.org/10.1127/zdgg/2021/0279, 2021. a, b
Balcewicz, M., Ahrens, B., Lippert, K., and Saenger, E. H.: Characterization of
discontinuities in potential reservoir rocks for geothermal applications in
the Rhine-Ruhr metropolitan area (Germany), Solid Earth, 12, 35–58,
https://doi.org/10.5194/se-12-35-2021, 2021. a, b
Baldschuhn, R., Binot, F., Fleig, S., and Kockel, F. (Eds.): Geotektonischer
Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor,
Schweizerbart Science Publishers, Stuttgart, Germany,
http://www.schweizerbart.de//publications/detail/isbn/9783510958818/Geologisches_Jahrbuch_Reihe_A_Heft_1 (last access: 10 January 2023),
2001. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Beni, A., Kühn, M., Meyer, R., and Clauser, C.: Numerical Modeling of a
Potential Geological CO 2 Sequestration Site at Minden (Germany), Environ.
Model. Assess., 17, 337–351, https://doi.org/10.1007/s10666-011-9295-x, 2012. a
Betz, D., Führer, F., Greiner, G., and Plein, E.: Evolution of the Lower
Saxony Basin – Compressional Intra-Plate Deformations in the Alpine Foreland,
Tectonophysics, 137, 127–170, https://doi.org/10.1016/0040-1951(87)90319-2, 1987. a
Born, H., Bracke, R., Eicker, T., and Rath, M.: Roadmap Oberflächennahe
Geothermie – Erdwärmepumpen für die Energiewende – Potenziale, Hemnisse und
Handlungsempfehlungen, Tech. rep., Fraunhofer-Einrichtung für
Energieinfrastrukturen und Geothermie IEG, https://doi.org/10.24406/publica-70, 2022. a
Bracke, R., Huenges, E., Acksel, D., Amann, F., Bremer, J., Bruhn, D., Budt, M., Bussmann, G., Gorke, J.-U., Grun, G., Hahn, F., Hanßke, A., Kohl, T., Kolditz, O., Regenspurg, S., Reinsch, T., Rink, K., Sass, I., Schill, E., Schneider, C., Shao, H., Teza, D., Thien, L., Utri, M., und Will, H.: Roadmap Tiefe Geothermie für Deutschland –
Handlungsempfehlungen für Politik, Wirtschaft und Wissenschaft für eine
erfolgreiche Wärmewende, Tech. rep., Fraunhofer-Einrichtung für
Energieinfrastrukturen und Geothermie IEG and Helmholtz-Gemeinschaft,
37 pp., https://doi.org/10.24406/ieg-n-645792, 2022. a
Deutloff, O. and Skupin, K.: Geologische Karte von Nordrhein-Westfalen 1: 100 000 – Blatt C 3918 Minden, Geologisches Landesamt Nordrhein-Westfalen, Krefeld, Germany, https://www.opengeodata.nrw.de/produkte/geologie/geologie/GK/ISGK100/GK100analog/GK100-C3918-Minden_EPSG25832_JPEG.zip (last access: 17 January 2023), 1982.
Feldrappe, H., Obst, K., and Wolfgramm, M.: Die mesozoischen Sandsteinaquifere
des Norddeutschen Beckens und ihr Potential für die geothermische Nutzung
[Mesozoic sandstone aquifers of the North German Basin and their potential
for the geothermal utilization], Z. Geol. Wiss.,
36, 199–222, 2008. a, b
Franz, M., Wolfgramm, M., Barth, G., Nowak, K., Zimmermann, J., Budach, I., and
Thorwart, K.: Schlussbericht Verbundprojekt: Identifikation hydraulisch
geeigneter Bereiche innerhalb der mesozoischen Sandsteinaquifere in
Norddeutschland [Final Report R&D project: Hydraulic properties of Mesozoic
sandstone aquifers of North Germany], Tech. rep., TU Bergakademie Freiberg,
333 pp., 2015. a, b, c, d
Franz, M., Barth, G., Zimmermann, J., Budach, I., Nowak, K., and Wolfgramm, M.:
Geothermal resources of the North German Basin: exploration strategy,
development examples and remaining opportunities in Mesozoic hydrothermal
reservoirs, Geol. Soc. Spec. Publ., 469, 193–222, https://doi.org/10.1144/SP469.11,
2018. a, b, c, d, e, f
Geologischer Dienst Nordrhein-Westfalen: Die Erdgeschichte unseres Landes, https://www.gd.nrw.de/ge_ev_stratigraphie.htm (last
access: 17 January 2023), 2022.
Hesshaus, A., Houben, G., and Kringel, R.: Halite clogging in a deep geothermal
well – Geochemical and isotopic characterisation of salt origin, Phys.
Chem. Earth, Parts A/B/C, 64, 127–139, https://doi.org/10.1016/j.pce.2013.06.002,
2013. a
Jüstel, A., Knaub, O., Strozyk, F., Bussmann, G., Wellmann, F., and Kukla, P.: Spatial distribution of Mesozoic deposits and their temperature ranges within the Weser-Wiehengebirge Syncline of the inverted Lower Saxony Basin, Minden area, Germany [Data set], in: Advances in Geosciences (1.0.0), EGU General Assembly 2022 (EGU 2022), Vienna, Austra, Zenodo [data set], https://doi.org/10.5281/zenodo.7488833, 2022. a
Kehrer, P., Orzol, J., Jung, R., Jatho, R., and Junker, R.: The GeneSys project
a contribution of Geozentrum Hannover to the development of Enhanced
Geothermal Systems (EGS), Z. Deutsch. Gesell.
Geow., 158, 119–132, https://doi.org/10.1127/1860-1804/2007/0158-0119,
2007. a
Kunkel, C. and Agemar, T.: Hydraulic Characterization of Potential Geothermal
Reservoirs in the North German Basin, European Geothermal Congress, 2019,
1–8, 2019. a
Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S.: Dynamics of Complex
Intracontinental Basins – The Central European Basin System, Springer Berlin,
Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-85085-4, 2008. a, b, c
May, F., Krull, P., and Gerling, P.: CO2 Storage Scenarios in North Germany –
GESTCO Project Case Studies, Tech. rep., Bundesanstalt für Geowissenschaften
und Rohstoffe,
https://www.bgr.bund.de/EN/Themen/Nutzung_tieferer_Untergrund_CO2Speicherung/Projekte/CO2Speicherung/Abgeschlossen/Nur-Deutsch/Gestco/GESTCO_project_case_studies_2004.pdf? (last access: 10 January 2023),
2004. a, b
Menning, M.: Die Stratigraphische Tabelle von Deutschland 2016 (STD 2016) [The Stratigraphic Table of Germany 2016 (STG 2016)], Z. Dtsch. Geol. Gesell., 169, 105–128, https://doi.org/10.1127/zdgg/2018/0161, 2018.
Michalzik, D., Fromme, K., Steffahn, J., Achilles, H.-H., and Schockemöhle,
C.: Das Geothermieprojekt der Stadtwerke Osnbrück, Schriftenreihe der
Deutschen Gesellschaft für Geowissenschaften, 8 – GeoHannover, 216, ISBN 978-3-510-49228-2, 2012. a
Nitschke, F., Held, S., Himmelsbach, T., and Kohl, T.: THC simulation of halite
scaling in deep geothermal single well production, Geothermics, 65, 234–243,
https://doi.org/10.1016/j.geothermics.2016.09.009, 2017. a, b
Perry, M.: python-rasterstats,
https://github.com/perrygeo/python-rasterstats (last access: 10 January 2023), 2021. a
Putnis, A. and Mauthe, G.: The effect of pore size on cementation in porous
rocks, Geofluids, 1, 37–41, https://doi.org/10.1046/j.1468-8123.2001.11001.x, 2001. a
QGIS Development Team: QGIS Geographic Information System, QGIS Association,
https://www.qgis.org (last access: 10 January 2023), 2022. a
Rabbel, W., Jusri, T., Köhn, D., Bahadur Motra, H., Niederau, J., Schreiter,
L., Thorwart, M., and Wuttke, F.: Seismic Velocity Uncertainties and their
Effect on Geothermal Predictions: A Case Study, Energy Procedia, 125,
283–290, https://doi.org/10.1016/j.egypro.2017.08.178, european
Geosciences Union General Assembly 2017, EGU Division Energy, Resources &
Environment (ERE), 2017. a
Sävecke, T.-T.: Transformation städtischer Wärmeversorgung mit Geothermie –
Hamburg Wilhelmsburg, Presented at the 13. Norddeutsche Geothermie Tagung,
12 May,
https://norddeutsche-geothermietagung.de/vortraege/2022/02_saevecke_transformation_staedtischer_waermeversorgung.pdf (last access: 10 January 2023),
2022. a, b
Tischner, T. and Hesshaus, A.: Stimulationsmaßnahmen, hydraulische Tests und
geochemische Untersuchungen, in: Erdwärmegewinnung mittels Generierter
geothermischer Systeme (GeneSys) – Teil 1: Testarbeiten in der Bohrung
Horstberg Z1 und Abteufen der Bohrung Groß Buchholz Gt1, edited by: Gerling,
J., Tischner, T., Kosinowski, M., and Bräuer, V., Chap. 3, 35–90,
Schweizbart Science Publishers, Stuttgart, Germany, ISBN 978-3-510-96853-4, 2015. a
Tischner, T., Evers, H., Hauswirth, H., Jatho, R., Kosinowski, M., and
Sulzbacher, H.: New Concepts for Extracting Geothermal Energy from One Well:
The GeneSys-Project, Proceedings World Geothermal Congress 2010, 2010, 1–5,
https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/2272.pdf (last access: 10 January 2023),
2010. a, b
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin
inversion in central Europe, Solid Earth, 12, 1443–1471,
https://doi.org/10.5194/se-12-1443-2021, 2021. a
Short summary
This study evaluates the structural geological requirements for the city of Minden, Germany, in order to provide thermal energy for domestic, commercial or even industrial usage. The structural geological modeling and the interpretation of a regional seismic line show possible geothermal reservoirs within different Mesozoic stratigraphic units (e.g. Keuper and Middle Bunter sandstones) at varying depths up to 4,100 m including temperatures obtained through analytical calculations above 150°C.
This study evaluates the structural geological requirements for the city of Minden, Germany, in...