TransPyREnd: a code for modelling the transport of radionuclides on geological timescales
Christoph Behrens
CORRESPONDING AUTHOR
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Elco Luijendijk
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
now at: Department of Earth Science, University of Bergen, 5020 Bergen, Norway
Phillip Kreye
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Florian Panitz
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Merle Bjorge
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Marlene Gelleszun
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Alexander Renz
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Shorash Miro
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Bundesgesellschaft für Endlagerung (BGE) mbH, Eschenstraße 55, 31224 Peine, Germany
Related authors
Eva-Maria Hoyer, Paulina Müller, Phillip Kreye, Christoph Behrens, Marc Wengler, Tobias Wengorsch, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 1, 39–40, https://doi.org/10.5194/sand-1-39-2021, https://doi.org/10.5194/sand-1-39-2021, 2021
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024, https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023, https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
Short summary
Crystalline rocks are being considered as potential host rocks in the ongoing search for a suitable site for a nuclear waste repository in Germany, where there is no existing experience in terms of excavating a repository in crystalline rocks. The planned underground laboratory GeoLaB addressing crystalline geothermal reservoirs offers unique opportunities for synergies with nuclear waste disposal research and development, especially in the exploration and building phases.
Michael Werres, Frederik Fahrendorf, Thomas Lohser, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 2, 179–180, https://doi.org/10.5194/sand-2-179-2023, https://doi.org/10.5194/sand-2-179-2023, 2023
Short summary
Short summary
The preliminary representative safety analyses in Phase I, Step 2 of the site selection procedure for the disposal of high-level radioactive waste in Germany requires, according to Section 7 (6) No. 4 EndlSiUntV, that
the basic possibility of safe operation shall be demonstrated but that a complete operational safety analysis does not need to be performed. This paper provides a summary of the methodology developed by the Bundesgesellschaft für Endlagerung (BGE) on this topic.
Paulina Müller, Eva-Maria Hoyer, Anne Bartetzko, and Wolfram Rühaak
E&G Quaternary Sci. J., 72, 73–76, https://doi.org/10.5194/egqsj-72-73-2023, https://doi.org/10.5194/egqsj-72-73-2023, 2023
Short summary
Short summary
The German search for a disposal site for high-level nuclear waste is in its first phase. In the so-called
representative preliminary safety assessmentsthe possible future evolutions of potential disposal sites will be developed from our understanding of their past evolution. Erosion processes connected to glaciations can reach especially deep and could threaten a repository, while being very hard to predict. This makes them important to the site selection process.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Elco Luijendijk
Earth Surf. Dynam., 10, 1–22, https://doi.org/10.5194/esurf-10-1-2022, https://doi.org/10.5194/esurf-10-1-2022, 2022
Short summary
Short summary
The distance between rivers is a noticeable feature of the Earth's surface. Previous work has indicated that subsurface groundwater flow may be important for drainage density. Here, I present a new model that combines subsurface and surface water flow and erosion, and demonstrates that groundwater exerts an important control on drainage density. Streams that incise rapidly can capture the groundwater discharge of adjacent streams, which may cause these streams to become dry and stop incising.
Eva-Maria Hoyer, Phillip Kreye, Thomas Lohser, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 1, 37–38, https://doi.org/10.5194/sand-1-37-2021, https://doi.org/10.5194/sand-1-37-2021, 2021
Short summary
Short summary
This contribution will provide an overview of the methodology of the forthcoming preliminary safety assessments as a significant part of the next steps in the German site selection procedure.
Eva-Maria Hoyer, Paulina Müller, Phillip Kreye, Christoph Behrens, Marc Wengler, Tobias Wengorsch, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 1, 39–40, https://doi.org/10.5194/sand-1-39-2021, https://doi.org/10.5194/sand-1-39-2021, 2021
Gesa Ziefle, Tuanny Cajuhi, Sebastian Condamin, Stephan Costabel, Oliver Czaikowski, Antoine Fourriére, Larissa Friedenberg, Markus Furche, Nico Graebling, Bastian Graupner, Jürgen Hesser, David Jaeggi, Kyra Jantschik, Tilo Kneuker, Olaf Kolditz, Franz Königer, Herbert Kunz, Ben Laurich, Jobst Maßmann, Christian Ostertag-Henning, Dorothee Rebscher, Karsten Rink, Wolfram Rühaak, Senecio Schefer, Rainer Schuhmann, Marc Wengler, and Klaus Wieczorek
Saf. Nucl. Waste Disposal, 1, 79–81, https://doi.org/10.5194/sand-1-79-2021, https://doi.org/10.5194/sand-1-79-2021, 2021
Eva-Maria Hoyer, Elco Luijendijk, Paulina Müller, Phillip Kreye, Florian Panitz, Dennis Gawletta, and Wolfram Rühaak
Adv. Geosci., 56, 67–75, https://doi.org/10.5194/adgeo-56-67-2021, https://doi.org/10.5194/adgeo-56-67-2021, 2021
Short summary
Short summary
The German site selection procedure to identify a site for the disposal of high-level radioactive waste is ongoing. The current step of the procedure includes representative preliminary safety analyses, for which the methodology is described and a first insight on the implementation is given. We aim to provide a document to boost communication and discussion with the scientific community and the public, although the implementation is at an early stage and may be subject to numerous changes.
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Johanna F. Bauer, Michael Krumbholz, Elco Luijendijk, and David C. Tanner
Solid Earth, 10, 2115–2135, https://doi.org/10.5194/se-10-2115-2019, https://doi.org/10.5194/se-10-2115-2019, 2019
Short summary
Short summary
We use a 4-D numerical sensitivity study to investigate which geological parameters exert a dominant control on the quality of a deep geothermal reservoir. We constrain how the variability of these parameters affects the economic potential of a reservoir. We show that the interplay of high permeability and hydraulic gradient is the dominant control on reservoir lifetime. Fracture anisotropy, typical for faults, leads to fluid channelling and thus restricts the exploitable volume significantly.
Elco Luijendijk
Geosci. Model Dev., 12, 4061–4073, https://doi.org/10.5194/gmd-12-4061-2019, https://doi.org/10.5194/gmd-12-4061-2019, 2019
Short summary
Short summary
This paper presents a new model code that can be used to date the flow of hot fluids in the crust and the age of hot springs. It does so by modelling the thermal effects of fluid flow in the subsurface and by comparing the results with low-temperature thermochronology, which is a widely used method to quantify the temperature history of minerals and rocks. The model also demonstrates the effects of the depth and angle of permeable faults on temperatures of hot springs.
Swarup Chauhan, Wolfram Rühaak, Hauke Anbergen, Alen Kabdenov, Marcus Freise, Thorsten Wille, and Ingo Sass
Solid Earth, 7, 1125–1139, https://doi.org/10.5194/se-7-1125-2016, https://doi.org/10.5194/se-7-1125-2016, 2016
Short summary
Short summary
Machine learning techniques are a promising alternative for processing (phase segmentation) of 3-D X-ray computer tomographic rock images. Here the performance and accuracy of different machine learning techniques are tested. The aim is to classify pore space, rock grains and matrix of four distinct rock samples. The porosity obtained based on the segmented XCT images is cross-validated with laboratory measurements. Accuracies of the different methods are discussed and recommendations proposed.
Phillip Kreye and Günter Meon
Hydrol. Earth Syst. Sci., 20, 2557–2571, https://doi.org/10.5194/hess-20-2557-2016, https://doi.org/10.5194/hess-20-2557-2016, 2016
Short summary
Short summary
The objective of this study is to improve the reliability of large-scale hydrological models. In environmental policies, many decisions are based on prognosis simulated by models. The parameterisation of these models is challenging due to the scarcity of available data. Particularly, parameters of soil properties are rare, but have a strong influence on model results. To account for the heterogeneity of soil properties, we developed a methodology that does not need additional field data.
Cited articles
Bateman, H.: The solution of a system of differential equations occurring in
the theory of radioactive transformations, Proc. Cambridge Philos. Soc.,
15, 423–427, 1910. a
Bear, J.: Dynamics of Fluids in Porous Media, Dover Publications, Inc.,
New York, ISBN13 9780486656755, 1972. a
BGE: Zwischenbericht Teilgebiete gemäß § 13 StandAG,
https://www.bge.de/fileadmin/user_upload/Standortsuche/Wesentliche_Unterlagen/Zwischenbericht_Teilgebiete/Zwischenbericht_Teilgebiete_barrierefrei.pdf (last access: 13 January 2023),
2020. a
BGE: Konzept zur Durchführung der repräsentativen vorläufigen
Sicherheitsuntersuchungen gemäß Endlagersicherheitsuntersuchungsverordnung,
Tech. rep., BGE mbH, https://www.bge.de/fileadmin/user_upload/Standortsuche/Wesentliche_Unterlagen/Methodik/Phase_I_Schritt_2/rvSU-Methodik/20220328_Konzept_zur_Durchfuehrung_der_rvSU_barrierefrei.pdf (last access: 13 January 2023), 2022a. a
BGE: Methodenbeschreibung zur Durchführung der repräsentativen vorläufigen
Sicherheitsuntersuchungen gemäß Endlagersicherheitsuntersuchungsverordnung,
Tech. rep., BGE mbH, https://www.bge.de/fileadmin/user_upload/Standortsuche/Wesentliche_Unterlagen/Methodik/Phase_I_Schritt_2/rvSU-Methodik/20220328_Anlage_zu_rvSU_Konzept_Methodenbeschreibung_barrierefrei.pdf (last access: 13 January 2023), 2022b. a
Bilke, L., Fischer, T., Naumov, D., Lehmann, C., Wang, W., Lu, R., Meng, B.,
Rink, K., Grunwald, N., Buchwald, J., Silbermann, C., Habel, R., Günther,
L., Mollaali, M., Meisel, T., Randow, J., Einspänner, S., Shao, H., Kurgyis,
K., Kolditz, O., and Garibay, J.: OpenGeoSys, Zenodo [code], https://doi.org/10.5281/zenodo.7092676,
2022. a
Bjorge, M., Kreye, P., Heim, E., Wellmann, F., and Rühaak, W.: The role of
geological models and uncertainties in safety assessments, Environ.
Earth Sci., 81, 190, https://doi.org/10.1007/s12665-022-10305-z, 2022. a
Clauser, C.: SHEMAT and Processing SHEMAT – Numerical Simulation of
Reactive Flow in Hot Aquifers, Springer, Heidelberg-Berlin, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-642-55684-5, 2003. a, b
Crank, J. and Nicolson, P.: A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type,
Math. Proc. Cambridge, 43, 50–67,
https://doi.org/10.1017/S0305004100023197, 1947. a
de Marsily, G.: Quantitative Hydrogeology, Academic Press, San Diego, ISBN 9780122089169, 1986. a
EndlSiAnfV: Endlagersicherheitsanforderungsverordnung vom 6. Oktober 2020
(BGBl. I S. 2094), Bundesanzeiger Verl.-Ges.,
ISSN 0341-1095,
2020. a
EndlSiUntV: Endlagersicherheitsuntersuchungsverordnung vom 6. Oktober 2020
(BGBl. I S. 2094, 2130), Bundesanzeiger Verl.-Ges.,
ISSN 0341-1095,
2020. a
Fischer-Appelt, K., Baltes, B., Buhmann, D., Larue, J., and Mönig, J.:
Synthesebericht für die VSG: Bericht zum Arbeitspaket 13. Vorläufige
Sicherheitsanalyse für den Standort Gorleben, GRS-290, Tech. rep.,
Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH, Köln, ISBN 978-3-939355-66-3, 2013. a, b
Freundlich, H.: Über die Adsorption in Lösungen, Z.
Phys. Chem., 57U, 385–470, https://doi.org/10.1515/zpch-1907-5723, 1907. a
Garibay-Rodriguez, J., Chen, C., Shao, H., Bilke, L., Kolditz, O., Montoya, V.,
and Lu, R.: Computational Framework for Radionuclide Migration Assessment in
Clay Rocks, Front. Nucl. Eng., 1,
https://doi.org/10.3389/fnuen.2022.919541, 2022. a
Geiser, J.: Diskretisierungsverfahren für Systeme von
Konvektions-Diffusions-Dispersions-Reaktions-Gleichungen und Anwendungen,
PhD Thesis, Naturwissenschaftlichen-Mathematischen Gesamtfakultät der
Ruprecht-Karls-Universität Heidelberg, Heidelberg,
https://archiv.ub.uni-heidelberg.de/volltextserver/4326/1/haupt.pdf (last access: 13 January 2023),
2004. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hoyer, E.-M., Luijendijk, E., Müller, P., Kreye, P., Panitz, F., Gawletta, D., and Rühaak, W.: Preliminary safety analyses in the high-level radioactive waste site selection procedure in Germany, Adv. Geosci., 56, 67–75, https://doi.org/10.5194/adgeo-56-67-2021, 2021. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Huysmans, M. and Dassargues, A.: Equivalent diffusion coefficient and
equivalent diffusion accessible porosity of a stratified porous medium,
Transport Porous Med., 66, 421–438, https://doi.org/10.1007/s11242-006-0028-6,
2007. a
Javandel, I., Doughty, C., and Tsang, C. F.: Groundwater Transport:
Handbook of Mathematical Models, vol. 10 of Water Resources
Monograph, AGU, ISBN 9780875903132, 1984. a
Kinzelbach, W.: Numerische Methoden zur Modellierung des Transports von
Schadstoffen im Grundwasser, 2nd Edn., Oldenbourg, ISBN 9783486263473, 1992. a
Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A LLVM-Based Python JIT
Compiler, in: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in: HPC, LLVM '15, Association for Computing Machinery, New
York, NY, USA, https://doi.org/10.1145/2833157.2833162, 2015. a, b
Li, X. S.: An Overview of SuperLU: Algorithms, Implementation, and User
Interface, ACM T. Math. Software, 31, 302–325, 2005. a
Luijendijk, E.: The role of fluid flow in the thermal history of sedimentary
basins: Inferences from thermochronology and numerical modeling in the Roer
Valley Graben, southern Netherlands, PhD thesis, Vrije Universiteit
Amsterdam, 2012. a
Luijendijk, E.: PyBasin: Numerical model of basin history, heat flow and
thermochronology, Zenodo [code], https://doi.org/10.5281/zenodo.4263427, 2020. a
Malins, A. and Lemoine, T.: radioactivedecay: A Python package for
radioactive decay calculations, J. Open Source Softw., 7,
3318, https://doi.org/10.21105/joss.03318, 2022. a, b, c
Marsal, D.: Finite Differenzen und Elemente, Numerische Lösung von
Variationsproblemen und partiellen Differentialgleichungen,
Springer-Verlag, Berlin, ISBN 978-3540501923, 1989. a
McKerns, M. M., Strand, L., Sullivan, T., Fang, A., and Aivazis, M.
A. G.: Building a Framework for Predictive Science, arXiv [preprint],
https://doi.org/10.48550/arXiv.1202.1056, 2012. a, b
Nagra: Project Opalinus Clay,
Technical Report 02-05, ISSN 1015-2636, 2002. a
Nagra: PICNIC-TD, User Guide for Version 1.4,
Arbeitsbericht NAB 13-21, 2013. a
Nagra: Provisional Safety Analyses
for SGT Stage 2: Models, Codes and General
Modelling Approach,
Technical Report 14-09, ISSN 1015-2636, 2014. a
Norman, S. and Kjellbert, N.: FARF31 – a far field radionuclide migration code
for use with the PROPER package, Tech. rep., Report Number SKB-TR-90-01, Svensk Kärnbränslehantering AB, https://www.skb.com/publication/2525/TR90-01webb.pdf (last access: 13 January 2023), 1990. a
Pandas development team: pandas-dev/pandas: Pandas, Zenodo [code],
https://doi.org/10.5281/zenodo.3509134, 2020. a
Pérez, F. and Granger, B. E.: IPython: a System for Interactive Scientific
Computing, Comput. Sci. Eng., 9, 21–29,
https://doi.org/10.1109/MCSE.2007.53, 2007. a
Pressyanov, D. S.: Short solution of the radioactive decay chain equations,
Am. J. Phys., 70, 444–445, https://doi.org/10.1119/1.1427084, 2002. a
Reiche, T.: RepoTREND Das Programmpaket zur integrierten
Langzeitsicherheitsanalyse von Endlagersystemen, GRS-413, Tech. rep.,
Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH, ISBN 9783944161952, 2016. a
Rühaak, W., Rath, V., Wolf, A., and Clauser, C.: 3D finite volume
groundwater and heat transport modeling with non-orthogonal grids, using a
coordinate transformation method, Adv. Water Resour., 31, 513–524,
https://doi.org/10.1016/j.advwatres.2007.11.002, 2008. a
Shamir, U. Y. and Harleman, D. R. F.: Numerical solutions for dispersion in
porous mediums, Water Resour. Res., 3, 557–581,
https://doi.org/10.1029/WR003i002p00557, 1967. a
Tartakovsky, D. M. and Dentz, M.: Diffusion in Porous Media: Phenomena and
Mechanisms, Transport Porous Med., 130, 105–127, https://doi.org//10.1007/s11242-019-01262-6, 2019. a
Thomas, L. H.: Elliptic problems in linear difference equations over a network,
Watson Sci. Comput. Lab. Rept., Columbia University, New York, 1, 71 pp., 1949. a
Trinchero, P., Cvetkovic, V., Selroos, J.-O., Bosbach, D., and Deissmann, G.:
Upscaling of radionuclide transport and retention in crystalline rocks
exhibiting micro-scale heterogeneity of the rock matrix, Adv. Water
Resour., 142, 103644,
https://doi.org/10.1016/j.advwatres.2020.103644, 2020. a
Van Genuchten, M.: Analytical solutions for chemical transport with
simultaneous, zero-order production and first-order decay, J. Hydrol., 49, 213–233, https://doi.org/10.1016/0022-1694(81)90214-6,
1981. a, b, c, d
Van Loon, L.: Effective diffusion coefficients and porosity values for
argillaceous rocks and bentonite: measured and estimated values for the
provisional safety analyses for SGT-E2, Tech. Rep. 1015-2636, ISSN 1015-2636,
http://inis.iaea.org/search/search.aspx?orig_q=RN:48088310 (last access: 13 January 2023),
2014. a, b
Van Rossum, G. and Drake Jr., F. L.: Python tutorial, Centrum voor Wiskunde en
Informatica Amsterdam, Rep. No. CS-R9526,
ISSN 0169-118X,
Amsterdam, Netherlands
https://ir.cwi.nl/pub/5007/05007D.pdf (last access: 13 January 2023), 1995. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b
Short summary
The mathematical basics of a numerical code developed specifically for the search of a site for high-level radioactive waste in Germany is presented.
The code is developed in accordance to the specific regulations. First tests of the code are shown.
The mathematical basics of a numerical code developed specifically for the search of a site for...