Berkowitz, B.: Characterizing flow and transport in fractured geological
media: a review, Adv Water Res., 25, 861–884,
https://doi.org/10.1016/S0309-1708(02)00042-8, 2002.
Berkowitz, B. and Balberg, I.: Percolation theory and its application to
groundwater hydrology, Water Resour. Res., 29, 775–794,
https://doi.org/10.1029/92WR02707, 1993.
Berkowitz, B. and Hadad, A.: Fractal and multifractal measures of natural
and synthetic fracture networks, J. Geophys. Res., 102,
12205–12218, https://doi.org/10.1029/97JB00304, 1997.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and
Berkowitz, B.: Scaling of fracture system in geological media, Rev.
Geophys., 39, 347–383, https://doi.org/10.1029/1999RG000074, 2001.
Botros, F., Hassan, A., Reeves, D., and Pohll, G.: On mapping fracture
networks onto continuum, Water Resour. Res., 44, W08435, https://doi.org/10.1029/2007WR006092,
2008.
Bour, O. and Davy, P.: Connectivity of random fault networks following a
power law fault length distribution, Water Resour. Res., 33, 1567–1583, https://doi.org/10.1029/96WR00433, 1997.
Bour, O., Davy, P., Darcel, C., and Odling, N. E: A statistical scaling model
for fracture network geometry, with validation on a multiscale mapping of a
joint network (Hornelen Basin, Norway), J. Geophys. Res.,
107, ETG 4-1–ETG 4-12, https://doi.org/10.1029/2001JB000176, 2002.
Cacas, M. C., Ledoux, E., de Marsily, Tillie, G. B., Barbreau, A., Durand, E., Feuga, B., and Peaudecerf, P.: Modeling fracture flow with a
stochastic discrete fracture network: calibration and validation: 1. The
flow model, Water Resour. Res., 26, 479–489,
https://doi.org/10.1029/WR026i003p00479, 1990a.
Cacas, M. C., Ledoux, E., de Marsily, G., Barbreau, A., Calmels, P., Gaillard, B., and Margritta, R.: Modeling fracture flow with a
stochastic discrete fracture network: calibration and validation: 2. The
Transport Model, Water Resour. Res., 26, 491–500,
https://doi.org/10.1029/WR026i003p00491, 1990b.
Chen, T.: Equivalent Permeability Distribution for Fractured Porous Rocks:
The Influence of Fracture Network Properties, Geofluids, 2020, 6751349, https://doi.org/10.1155/2020/6751349, 2020.
Darcel, C., Bour, O., Davy, P., and de Dreuzy, J. R.: Connectivity properties
of two-dimensional fracture networks with
stochastic fractal correlation, Water Resour. Res., 39, 1272,
https://doi.org/10.1029/2002WR001628, 2003.
Datta-Gupta, A. and King, M. J.: Streamline Simulation: Theory and Practice,
Textbook Series 11, ISBN 978-1-55563-111-6, Society of Petroleum Engineers,
Richardson, TX, 2007.
de Dreuzy, J. R., Davy, P., and Bour, O.: Hydraulic properties of
two-dimensional random fracture networks following power law distributions
of length and aperture, Water Resour. Res., 38, 1–9,
https://doi.org/10.1029/2001WR001009, 2002.
Gong, J. and Rossen, W. R.: Modeling flow in naturally fractured reservoirs:
effect of fracture aperture distribution on dominant sub-network for flow,
Pet. Sci., 14, 138–154, https://doi.org/10.1007/s12182-016-0132-3, 2017.
Hardebol, N. J., Maier, C., Nick, H., Geiger, S., Bertotti, G., and Boro, H.:
Multiscale fracture network characterization and impact on flow: A case
study on the Latemar carbonate platform, J. Geophys. Res.-Sol. Ea., 120,
12, 8197–8222, https://doi.org/10.1002/2015JB011879, 2015.
Healy, D. and Rizzo, R.: FracPaQ – Fracture Pattern Quantification, available at:
https://www.fracpaq.com/download.html, last access: 11 November 2021.
Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J. C., Watkins, H.,
Timms, N. E., Gomez-Rivas, E., and Smith, M.: FracPaQ: A MATLAB™ toolbox
for the quantification of fracture patterns, J. Struct. Geol.,
95, 1–16, https://doi.org/10.1016/j.jsg.2016.12.003, 2017.
Kaulatilake, P. H. S. W., Park, J., Balasingam, P., and Morgan, R.: Natural rock
joint roughness quantification through fractal techniques, Geotechnical and
Geological Engineering, 24, 1181–1202, https://doi.org/10.1007/s10706-005-1219-6,
2006.
Klepikova, M. V., Borgne, L. T., Boura, O., Gallagher, K., Hochreutener, R., and Lavenant, N.: Passive temperature tomography experiments to
characterize transmissivity an
d connectivity of preferential flow paths in
fractured media, J. Hydrol., 512, 549–562, https://doi.org/10.1016/j.jhydrol.2014.03.018, 2014.
Langevin, C. D.: Stochastic ground water flow simulation with a fracture
zone continuum model, Ground Water, 41, 587–601, https://doi.org/10.1111/j.1745-6584.2003.tb02397.x, 2003.
Leung, C. T. O., Hoch, A. R., and Zimmerman, R. W.: Comparison of discrete
fracture network and equivalent continuum simulations of fluid flow through
two-dimensional fracture networks for the DECOVALEX2011 project,
Mineral. Mag., 76, 3179–3190, https://doi.org/10.1180/minmag.2012.076.8.31, 2012.
Manzocchi, T.: The connectivity of two-dimensional networks of spatially
correlated fractures, Water Resour. Res., 38, 1162, https://doi.org/10.1029/2000WR000180, 2002.
McKenna, S. A. and Reeves, P. C.: Fractured continuum approach to stochastic
permeability modelling, in:
Stochastic modelling and geo-statistics: principles, methods and case
studies, edited by: Coburn, T. C., Yarus, J. M., and Chambers, R. L., Vol. II, AAPG Comput. Appl. Geol. 5. AAPG, Tulsa, Okla,
173–186, 2006.
Min, K. B., Jing, L., and Stephansson, O.: Determining the equivalent
permeability tensor for fractured rock masses using a stochastic REV
approach: method and application to the field data from Sellafield, UK,
Hydrogeol. J., 12, 497–510, https://doi.org/10.1007/s10040-004-0331-7, 2004.
Neretnieks, I., Eriksen, T., and Tahtinen, P.: Tracer movement in a single
fissure in granitic rock – some experimental results and their
interpretation, Water Resour. Res., 18, 849–858,
https://doi.org/10.1029/WR018i004p00849, 1982.
Neuman, S. P.: Trends, prospects and challenges in quantifying flow and
transport through fractured rocks, Hydrogeol. J., 13, 124–147, https://doi.org/10.1007/s10040-004-0397-2, 2005.
Odling, N. E.: Scaling and connectivity of joint systems in sandstones from
western Norway, J. Struct. Geol., 19, 1257–1271, https://doi.org/10.1016/S0191-8141(97)00041-2, 1997.
Odling, N. E. and Roden, J. E.: Contaminant transport in fractured rocks with
significant matrix permeability, using natural fracture geometries, J. Contam. Hydrol., 27, 263–283, https://doi.org/10.1016/S0169-7722(96)00096-4,
1997.
Painter, S. and Cvetkovic, V.: Upscaling discrete fracture network
simulations: An alternative to continuum transport models, Water Resour.
Res., 41, W02002, https://doi.org/10.1029/2004WR003682, 2005.
Parney, R. W. and Smith, L.: Fluid velocity and path length in fractured
media, Geophys. Res. Lett., 22, 1437–1440, https://doi.org/10.1029/95gl01494,
1995.
Reeves, D. M., Benson, D. A., and Meerschaert, M. M.: Transport of
conservative solutes in simulated fracture networks: 1. Synthetic data
generation, Water Resour. Res., 44, W05404, https://doi.org/10.1029/2007WR006069, 2008.
Robinson, P.: Connectivity of fracture systems: a percolation theory
approach, J. Phys. A, 16, 605, https://doi.org/10.1088/0305-4470/16/3/020,
1983.
Roy, A., Perfect, E., Dunne, W. M., and McKay, L. D.: Fractal
characterization of fracture networks: An improved box-counting technique,
J. Geophys. Res., 112, B12201, https://doi.org/10.1029/2006JB004582, 2007.
Roy, A., Perfect, E., Dunne, W. M., Odling, N., and Kim, J. W.: Lacunarity
analysis of fracture networks: Evidence for scale-dependent clustering,
J. Struct. Geol., 32, 1444–1449, https://doi.org/10.1142/S0218348X14400039, 2010.
Sahu, A. K. and Roy, A.: Clustering, Connectivity and Flow Responses of Deterministic Fractal-Fracture Networks, Adv. Geosci., 54, 149–156, https://doi.org/10.5194/adgeo-54-149-2020, 2020.
Sanderson, J. D. and Nixon, W. C.: Topology, connectivity and percolation in
fracture networks, J. Struct. Geol., 115, 167–177,
https://doi.org/10.1016/j.jsg.2018.07.011, 2015.
Sanderson, D. J., Peacock, D. C., Nixon, C. W., and Rotevatn, A.: Graph theory and
the analysis of fracture networks, J. Struct. Geol., 125, 155–165., https://doi.org/10.1016/j.jsg.2018.04.011, 2019.
Sarkar, S., Toksoz, M. N., and Burns, D. R.: Fluid flow modeling in
fractures, Massachusetts Institute of Technology, Earth
Resources Laboratory, Cambridge, MA, USA, Corpus ID: 14317982, 2004.
Snow, D. T.: Anisotropic Permeability of Fractured Media, Water Resour.
Res., 5, 1273–1289, https://doi.org/10.1029/WR005i006p01273, 1969.
Somogyvári, M., Jalali, M., Parras, S. J., and Bayer, P.: Synthetic fracture network characterization with
transdimensional inversion, Water Resour. Res.,
53.3, 5104–5123, https://doi.org/10.1002/2016WR020293, 2017.
Svensson, U.: A continuum representation of fracture networks. Part I: method
and basic test cases, J. Hydrol., 250, 170–186, https://doi.org/10.1016/S0022-1694(01)00435-8, 2001a.
Svensson, U.: A continuum representation of fracture networks. Part II:
application to the Äspö Hard Rock laboratory, J. Hydrol., 250,
187–205, https://doi.org/10.1016/S0022-1694(01)00436-X, 2001b.
Schwartz, F. W. and Smith, L.: A continuum approach for modeling mass
transport in fractured media, Water Resour. Res., 24, 1360–1372, https://doi.org/10.1029/WR024i008p01360, 1988.
Tsang, Y. W., Tsang, C. F., Hale, F. V., and Dverstorp, B.: Tracer transport
in a stochastic continuum model of fractured media, Water Resour. Res., 32,
3077–3092, https://doi.org/10.1029/96WR01397, 1996.