Benchmark data for verifying background model implementations in orbit and gravity field determination software
Martin Lasser
CORRESPONDING AUTHOR
Astronomical Institute, University of Bern, Bern, Switzerland
Ulrich Meyer
Astronomical Institute, University of Bern, Bern, Switzerland
Adrian Jäggi
Astronomical Institute, University of Bern, Bern, Switzerland
Torsten Mayer-Gürr
Institute of Geodesy, Graz University of Technology, Graz, Austria
Andreas Kvas
Institute of Geodesy, Graz University of Technology, Graz, Austria
Karl Hans Neumayer
GFZ German Research Centre for Geosciences, Potsdam, Germany
Christoph Dahle
GFZ German Research Centre for Geosciences, Potsdam, Germany
Frank Flechtner
GFZ German Research Centre for Geosciences, Potsdam, Germany
Jean-Michel Lemoine
Groupe de Recherche de Géodésie Spatiale, Centre National
d’Etudes Spatiales, Toulouse, France
Igor Koch
Institut für Erdmessung, Leibniz University of Hannover, Hannover, Germany
Matthias Weigelt
Institut für Erdmessung, Leibniz University of Hannover, Hannover, Germany
Jakob Flury
Institut für Erdmessung, Leibniz University of Hannover, Hannover, Germany
Related authors
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 101–113, https://doi.org/10.5194/adgeo-50-101-2020, https://doi.org/10.5194/adgeo-50-101-2020, 2020
Short summary
Short summary
We compute gravity field solutions from kinematic orbit positions of GRACE. These positions are derived from GPS based observations, and hence, they are contaminated by measurement noise. We present three methods of dealing with the noise in the data to obtain not only high-quality gravity field solutions but also an accurate quality information of the gravity fields.
Maksym Vasiuta, Angel Navarro Trastoy, Sanam Motlaghzadeh, Lauri Tuppi, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 18, 5015–5030, https://doi.org/10.5194/gmd-18-5015-2025, https://doi.org/10.5194/gmd-18-5015-2025, 2025
Short summary
Short summary
Propagation of electromagnetic signals in Earth's neutral atmosphere inflicts errors in space geodetic observations. To model these errors accurately, it is necessary to use a signal tracing algorithm which is informed of the state of the atmosphere. We developed such an algorithm and tested it by processing Global Navigation Satellite System network observations. Our algorithm's main advantage is lossless utilization of atmospheric information provided by numerical weather prediction models.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Stephanie J. Haas, Andreas Kvas, and Jürgen Fuchsberger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1819, https://doi.org/10.5194/egusphere-2025-1819, 2025
Short summary
Short summary
In southeast Austria, summer thunderstorms often cause severe damage but are very hard to accurately forecast. With data from the WegenerNet 3D Open-Air Laboratory, we study these storms from beginning to end in multiple atmospheric parameters, like temperature, cloud properties, and wind speed. The characteristic features we find in these parameters expand our understanding of intense storms and can improve their prediction.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data, 17, 611–631, https://doi.org/10.5194/essd-17-611-2025, https://doi.org/10.5194/essd-17-611-2025, 2025
Short summary
Short summary
GRACE and GRACE-FO are unique observing systems to quantify mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS (Gravity Information Service) provides easy access to user-friendly, regularly updated mass anomaly products. The portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Alexandra Klemme, Thorsten Warneke, Heinrich Bovensmann, Matthias Weigelt, Jürgen Müller, Tim Rixen, Justus Notholt, and Claus Lämmerzahl
Hydrol. Earth Syst. Sci., 28, 1527–1538, https://doi.org/10.5194/hess-28-1527-2024, https://doi.org/10.5194/hess-28-1527-2024, 2024
Short summary
Short summary
Satellite data help estimate groundwater depletion, but earlier assessments missed mass loss from river sediment. In the Ganges–Brahmaputra–Meghna (GBM) river system, sediment accounts for 4 % of the depletion. Correcting for sediment in the GBM mountains reduces estimated depletion by 14 %. It's important to note that the Himalayas' uplift may offset some sediment-induced mass loss. This understanding is vital for accurate water storage trend assessments and sustainable groundwater management.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Angel Navarro Trastoy, Sebastian Strasser, Lauri Tuppi, Maksym Vasiuta, Markku Poutanen, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 15, 2763–2771, https://doi.org/10.5194/gmd-15-2763-2022, https://doi.org/10.5194/gmd-15-2763-2022, 2022
Short summary
Short summary
Production of satellite products relies on information from different centers. By coupling a weather model and an orbit determination solver we eliminate the dependence on one of the centers. The coupling has proven to be possible in the first stage, where no formatting has been applied to any of the models involved. This opens a window for further development and improvement to a coupling that has proven to be as good as the predecessor model.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
Andreas Kvas, Jan Martin Brockmann, Sandro Krauss, Till Schubert, Thomas Gruber, Ulrich Meyer, Torsten Mayer-Gürr, Wolf-Dieter Schuh, Adrian Jäggi, and Roland Pail
Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021, https://doi.org/10.5194/essd-13-99-2021, 2021
Short summary
Short summary
Earth's gravity field provides invaluable insights into the state and changing nature of our planet. GOCO06s combines over 1 billion measurements from 19 satellites to produce a global gravity field model. The combination of different observation principles allows us to exploit the strengths of each satellite mission and provide a high-quality data set for Earth and climate sciences.
Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 101–113, https://doi.org/10.5194/adgeo-50-101-2020, https://doi.org/10.5194/adgeo-50-101-2020, 2020
Short summary
Short summary
We compute gravity field solutions from kinematic orbit positions of GRACE. These positions are derived from GPS based observations, and hence, they are contaminated by measurement noise. We present three methods of dealing with the noise in the data to obtain not only high-quality gravity field solutions but also an accurate quality information of the gravity fields.
Cited articles
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A
new release of the International Terrestrial Reference Frame modeling
nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121,
6109–6131, https://doi.org/10.1002/2016JB013098, 2016. a
Arnold, D., Bertone, S., Jäggi, A., Beutler, G., and Mervart, L.: GRAIL
gravity field determination using the Celestial Mechanics Approach, Icarus,
261, 182–192, https://doi.org/10.1016/j.icarus.2015.08.015, 2015. a
Barthelmes, F. and Förste, C.: The ICGEM-format, Technical report, GFZ
Potsdam, Germany, Department 1 Geodesy and Remote Sensing, available at: http://icgem.gfz-potsdam.de/ICGEM-Format-2011.pdf (last access: 1 December 2020), 2011. a
Bizouard, C., Lambert, S., Gattano, C., Becker, O., and Richard, J.-Y.: The
IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF
2014, J. Geodesy, 93, 621–633, https://doi.org/10.1007/s00190-018-1186-3,
2018. a
Dach, R., Lutz, S., Walser, P., and Fridez, F.: Bernese GPS software version
5.2, Documentation, University of Bern, Bern Open Publishing,
https://doi.org/10.7892/boris.72297, 2015. a
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer,
K. H., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., and Förste,
C.: The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details
and Quality Assessment, Remote Sens.-Basel, 11, 2116, https://doi.org/10.3390/rs11182116, 2019. a
Desai, S. D.: Observing the pole tide with satellite altimetry, J. Geophys. Res.-Oceans, 107, 71713, https://doi.org/10.1029/2001JC001224, 2002. a, b
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C.,
Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of
non-tidal atmosphere and ocean mass variability for de-aliasing of satellite
gravity observations: AOD1B RL06, Geophys. J. Int., 211,
263–269, https://doi.org/10.1093/gji/ggx302, 2017. a, b
Doodson, A. T. and Lamb, H.: The harmonic development of the tide-generating
potential, P. Roy. Soc. Lond. A, 100, 305–329,
https://doi.org/10.1098/rspa.1921.0088, 1921. a, b
Ellmer, M. and Mayer-Gürr, T.: High precision dynamic orbit integration for
spaceborne gravimetry in view of GRACE Follow-on, Adv. Space Res.,
60, 1–13, https://doi.org/10.1016/j.asr.2017.04.015, 2017. a
Fey, A. L., Gordon, D., and Jacobs, C. S.: The Second Realization of the
International Celestial Reference Frame by Very Long Baseline Interferometry, IERS Technical Note No. 35, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 2009. a
Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C.,
Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R.: EIGEN-6C4 The
latest combined global gravity field model including GOCE data up to degree
and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services,
https://doi.org/10.5880/icgem.2015.1, 2014. a, b
Friis-Christensen, E., Lühr, H., Knudsen, D., and Haagmans, R.: Swarm – An
Earth Observation Mission investigating Geospace, Adv. Space Res.,
41, 210–216, https://doi.org/10.1016/j.asr.2006.10.008, 2006. a
Glaser, S., König, R., Neumayer, K. H., Nilsson, T., Heinkelmann, R.,
Flechtner, F., and Schuh, H.: On the impact of local ties on the datum
realization of global terrestrial reference frames, J. Geodesy, 93,
655–667, https://doi.org/10.1007/s00190-018-1189-0, 2019. a
Heiskanen, W. A. and Moritz, H.: Physical geodesy, W. H. Freeman and Company,
San Francisco, USA, 1967. a
IEEE-754: IEEE Standard for Binary Floating-Point Arithmetic in ANSI/IEEE Std 754–1985, 1–20, https://doi.org/10.1109/IEEESTD.1985.82928, 1985. a
IERS: Update IERS 2010 Conventions ch. 7.1.4, available at: http://iers-conventions.obspm.fr/content/chapter7/icc7.pdf (last access: 1 December 2020),
2018. a
Jäggi, A., Meyer, U., Lasser, M., Jenny, B., Lopez, T., Flechtner, F., Dahle,
C., Förste, C., Mayer-Gürr, T., Kvas, A., Lemoine, J.-M., Bourgogne, S.,
Weigelt, M., and Groh, A.: International Combination Service for
Time-Variable Gravity Fields (COST-G) – Start of Operational Phase and Future Perspectives, IAG Symposia, Springer, Berlin, Heidelberg, 1–9, https://doi.org/10.1007/1345_2020_109, 2020. a
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service,
Springer Handbooks, Cham, 967–982, https://doi.org/10.1007/978-3-319-42928-1_33, 2017. a
Koch, I., Flury, J., Naeimi, M., and Shabanloui, A.: LUH-GRACE2018: A New Time
Series of Monthly Gravity Field Solutions from GRACE, IAG Symposia, Springer, Berlin, Heidelberg 1–9,
https://doi.org/10.1007/1345_2020_92, 2020. a, b
Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N.,
and Mayer-Gürr, T.: ITSG‐Grace2018: Overview and evaluation of a new
GRACE‐only gravity field time series, J. Geophys. Res.-Sol. Ea., 124, 9332–9344, https://doi.org/10.1029/2019JB017415, 2019. a
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H.,
Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H.-Y., Wiese,
D. N., and Yuan, D.-N.: Extending the Global Mass Change Data Record: GRACE
Follow-On Instrument and Science Data Performance, Geophys. Res.
Lett., 47, e2020GL088306, https://doi.org/10.1029/2020GL088306, 2020. a
Mayer-Gürr, T. and Kvas, A.: COST-G software comparison, Graz University of Technology, available at: ftp://ftp.tugraz.at/outgoing/ITSG/COST-G/softwareComparison/, 2019. a
Meyer, U., Jäggi, A., Jean, Y., and Beutler, G.: AIUB-RL02: an improved
time-series of monthly gravity fields from GRACE data, Geophys. J.
Int., 205, 1196–1207, https://doi.org/10.1093/gji/ggw081, 2016. a
Naeimi, M.: A modified Gauss-Jackson method for the numerical integration of
the variational equations, Geophysical Research Abstracts, Vol. 20, EGU2018-1513-2, 2018, EGU General Assembly 2018, Vienna, Austria, 8–13, April 2018. a
Pearlman, M. R., Degnan, J. J., and Bosworth, J. M.: The International Laser
Ranging Service, Adv. Space Res., 30, 135–143,
https://doi.org/10.1016/S0273-1177(02)00277-6, 2002. a
Prange, L., Orliac, E., Dach, R., Arnold, D., Beutler, G., Schaer, S., and Jäggi,
A.: CODE's five-system orbit and clock solution – the challenges of
multi-GNSS data analysis, J. Geodesy, 91, 345–360,
https://doi.org/10.1007/s00190-016-0968-8, 2017. a
Strasser, S., Mayer-Gürr, T., and Zehentner, N.: Processing of GNSS
constellations and ground station networks using the raw observation
approach, J. Geodesy, 93, 1045–1057, https://doi.org/10.1007/s00190-018-1223-2, 2019. a
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004. a
Touboul, P., Willemenot, E., Foulon, B., and Josselin, V.: Accelerometers for
CHAMP, GRACE and GOCE space missions: Synergy and evolution, Bol. Geofis.
Teor. Appl., 40, 321–327, 1999. a
Weigelt, M., van Dam, T., Jäggi, A., Prange, L., Tourian, M. J., Keller, W.,
and Sneeuw, N.: Time-variable gravity signal in Greenland revealed by
high-low satellite-to-satellite tracking, J. Geophys. Res.-Sol. Ea., 118, 3848–3859, https://doi.org/10.1002/jgrb.50283, 2013.
a, b
Zhu, S., Reigber, C., and König, R.: Integrated adjustment of CHAMP, GRACE,
and GPS data, J. Geodesy, 78, 103–108,
https://doi.org/10.1007/s00190-004-0379-0, 2004. a
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple...