Bloembergen, N., Purcell, E. M., and Pound, R. V.: Relaxation effects in
nuclear magnetic resonance absorption, Phys. Rev., 73, 679–712,
https://doi.org/10.1103/PhysRev.73.679, 1948.
Bogdanovich, N. N., Borisenko, S. A., Kozlova, E. V., Spasennykh, M. Y., and
Rudakovskaya, S. Y.: Mosaic Hydrophobization of the Surface of Organic-Mineral Matrix from Rocks of Bazhenov Formation (Russian), in: SPE
Russian Petroleum Technology Conference, 16 October 2017, Moscow, Russia, 2017.
Borisenko, S., Bogdanovich, N. N., Kozlova, E., Spasennykh, M., and Zagranovskaya, D. E.: Estimating lyophilic properties of the Bazhenov formation rocks by adsorption and NMR methods, Neftyanoe khozyaystvo – Oil
Industry, Moscow, Russia, 12–16, https://doi.org/10.24887/0028-2448-2017-3-12-16, 2017.
Callaghan, P.: Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, 1991.
Donaldson, E. C., Thomas, R. D., and Lorenz, P. B.: Wettability Determination and Its Effect on Recovery Efficiency, SPE-2338-PA, Society of Petroleum Engineers, Richardson, TX, USA, 9, 13–20,
https://doi.org/10.2118/2338-PA, 1969.
Fanchi, J. R.: Chapter 7 – Measures of Rock-Fluid Interactions, in: Shared
Earth Modeling, edited by: Fanchi, J. R., Butterworth-Heinemann, Woburn, 108–132, 2002.
Foley, I., Farooqui, S. A., and Kleinberg, R. L.: Effect of Paramagnetic Ions on NMR Relaxation of Fluids at Solid Surfaces, J. Magnet. Reson. Ser. A, 123, 95–104, https://doi.org/10.1006/jmra.1996.0218, 1996.
Guiltinan, E. J., Cardenas, M. B., Bennett, P. C., Zhang, T., and Espinoza, D. N.: The effect of organic matter and thermal maturity on the wettability
of supercritical
CO2 on organic shales, Int. J. Greenhouse Gas Control, 65, 15–22, https://doi.org/10.1016/j.ijggc.2017.08.006, 2017.
Iglauer, S.:
CO2–Water–Rock Wettability: Variability, Influencing Factors, and Implications for
CO2 Geostorage, Account. Chem. Res., 50, 1134–1142, https://doi.org/10.1021/acs.accounts.6b00602, 2017.
Ivanova, A. A., Miturev, N. A., Shilobreeva, S. N., and Cheremisin, A. N.: A review of experimental methods for studying th
e wetting properties of oil reservoir rocks, Earth Phys., 135–149, https://doi.org/10.31857/s0002-333720193135-149, 2019.
Jagadisan, A. and Heidari, Z.: Experimental Quantification of the Effect of
Thermal Maturity of Kerogen on Its Wettability, SPE-195684-PA, Society of Petroleum Engineers, Richardson, TX, USA, 22, 1323–1333, https://doi.org/10.2118/195684-PA, 2019.
Kontorovich, A. E., Moskvin, V. I., Bostrikov, O. I., Danilova, V. P., Fomin, A. N., Fomichev, A. S., Kostyreva, E. A., and Melenevsky, V. N.: Main oil source formations of the West Siberian Basin, Petrol. Geosci., 3, 343–358, https://doi.org/10.1144/petgeo.3.4.343, 1997.
Lazar, O. R., Bohacs, K. M., Schieber, J., Macquaker, J. H., and Demko, T. M.: Mudstone Primer: Lithofacies variations, diagnostic criteria, and
sedimentologic-stratigraphic implications at lamina to bedset scales, SEPM
– Society for Sedimentary Geology, Broken Arrow, OK, USA, 2015.
Liu, F., Yang, H., Chen, T., Zhang, S., Yu, D., Chen, Y., and Xie, Q.: Direct Evidence of Salinity and pH Effects on the Interfacial Interactions of Asphaltene-Brine-Silica Systems, Molecules, 25, 1214, https://doi.org/10.3390/molecules25051214, 2020.
Liu, X., Zhang, J., Liu, Y., Huang, H., and Liu, Z.: Main factors controlling the wettability of gas shales: A case study of over-mature marine shale in the Longmaxi Formation, J. Nat. Gas Sci. Eng., 56, 18–28, https://doi.org/10.1016/j.jngse.2018.05.017, 2018.
Morrow, N. R.: Wettability and Its Effect on Oil Recovery, SPE-21621-PA, Society of Petroleum Engineering, Richardson, TX, USA, 42, 1476–1484, https://doi.org/10.2118/21621-PA, 1990.
Odusina, E. O., Sondergeld, C. H., and Rai, C. S.: NMR Study of Shale Wettability, in: SPE Unconventional Resources Conference, 1 January 2011, Calgary, Alberta, Canada, 2011.
Ogunberu, A. L. and Ayub, M.: The Role of Wettability in Petroleum Recovery, Petrol. Sci. Technol., 23, 169–188, https://doi.org/10.1081/LFT-200028145, 2005.
Pan, B., Li, Y., Zhang, M., Wang, X., and Iglauer, S.: Effect of total organic carbon (TOC) content on shale wettability at high pressure and high
temperature conditions, J. Petrol. Sci. Eng., 193, 107374, https://doi.org/10.1016/j.petrol.2020.107374, 2020.
Prishchepa, O. M., Averianova, O. Y., Ilyinskiy, A. A., and Morariu, D.:
Tight oil and gas formations – Russia's hydrocarbons future resources, VNIGRI, Saint-Petersburg, Russia, 12–24, 2014.
Ryzhkova, S. V., Burshtein, L. M., Ershov, S. V., Kazanenkov, V. A., Kontorovich, A. E., Kontorovich, V. A., Nekhaev, A. Y., Nikitenko, B. L.,
Fomin, M. A., Shurygin, B. N., Beizel, A. L., Borisov, E. V., Zolotova, O.
V., Kalinina, L. M., and Ponomareva, E. V.: The Bazhenov Horizon of West
Siberia: structure, correlation, and thickness, Russ. Geol. Geophys., 59, 846–863, https://doi.org/10.1016/j.rgg.2018.07.009, 2018.
Safari, M., Rahimi, A., Gholami, R., Permana, A., and Siaw Khur, W.: Underlying mechanisms of shale wettability alteration by low salinity water injection (LSWI), in: Journal of Dispersion Science and Technology, Taylor & Francis, Oxfordshire, UK, 1–9, https://doi.org/10.1080/01932691.2020.1813156, 2020.
Sayers, C. M.: The effect of kerogen on the elastic anisotropy of organic-rich shales, Geophysics, 78, D65–D74, https://doi.org/10.1190/geo2012-0309.1, 2013.
Sheng, J. J.: Discussion of shale rock wettability and the methods to determine it, Asia-Pac. J. Chem. Eng., 13, e2263, https://doi.org/10.1002/apj.2263, 2018.
Siddiqui, M. A. Q., Ali, S., Fei, H., and Roshan, H.: Current understanding
of shale wettability: A review on contact angle measurements, Earth-Sci. Rev., 181, 1–11, https://doi.org/10.1016/j.earscirev.2018.04.002, 2018.
Song, X., Qin, Y., Ma, H., Wu, M., and Ma, L.: The effect of sedimentary
microfacies on wettability of tight sandstone in coal-bearing strata: a case
from Ordos Basin, China, Petrol. Sci. Technol., 36, 1958–1967,
https://doi.org/10.1080/10916466.2018.1519577, 2018.
Straley, C., Rossini, D., Vinegar, H. J., Tutunjan, P., and Morriss, C. E.:
Core Analysis by Low-Field NMR, SPWLA-1997-v38n2a4, Society of Petroleum Engineering, Richardson, TX, USA, 38, 84–94, 1997.
Thyne, G.: A review of the measurement of wettability, Science Based Solution Report based on a report for Sandia National Laboratory, 1–27, available at:
https://esalinity.com/2015/10/06/a-review-of-the-measurement-of-wettability/ (last access: December 2020), 2015.
Valori, A. and Nicot, B.: A Review of 60 Years of NMR Wettability, SPWLA-2019-v60n2a3, Society of Petrophysicists and Well-Log Analysts, Houston, TX, USA, 60, 255–263, 2019.
Yan, F. and Han, D.-H.: Measurement of elastic properties of kerogen, in:
SEG Technical Program Expanded Abstracts 2013, SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, Tulsa, OK, USA, 2778–2782, 2013.
Yang, R., He, S., Hu, Q., Zhai, G., Yi, J., and Zhang, L.: Comparative Investigations on Wettability of Typical Marine, Continental, and
Transitional Shales in the Middle Yangtze Platform (China), Energ. Fuels, 32, 12187–12197, https://doi.org/10.1021/acs.energyfuels.8b02805, 2018.