Neapolitan volcanic area Tide Gauge Network (Southern Italy): Ground Displacements and Sea-Level Oscillations
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Vesuviano, via Diocleziano 328, Napoli, Italy
Francesco Obrizzo
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Vesuviano, via Diocleziano 328, Napoli, Italy
Umberto Riccardi
Dipartimento di Scienze della Terra, dell'ambiente e delle Risorse
(DiSTAR), University “Federico II” of Naples, Napoli, Italy
Research Group “Geodesia”, Universidad Complutense de Madrid, 28040
Madrid, Spain
Adriano La Rocca
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Vesuviano, via Diocleziano 328, Napoli, Italy
Salvatore Pinto
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Vesuviano, via Diocleziano 328, Napoli, Italy
Giuseppe Brandi
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Vesuviano, via Diocleziano 328, Napoli, Italy
Enrico Vertechi
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio
Vesuviano, via Diocleziano 328, Napoli, Italy
Paolo Capuano
Department of Physics “E.R. Caianiello”, University of Salerno,
Fisciano, Salerno, Italy
Related authors
Umberto Tammaro, Umberto Riccardi, Vittorio Romano, Michele Meo, and Paolo Capuano
Adv. Geosci., 52, 145–152, https://doi.org/10.5194/adgeo-52-145-2021, https://doi.org/10.5194/adgeo-52-145-2021, 2021
Short summary
Short summary
We simulate the deformation of Somma-Vesuvius volcano due to some overpressure sources by means of a finite element 3D code. The goal of these simulations is to investigate the influence of topography and structural heterogeneity on ground deformation. The results suggest that they are key factors governing the ground deformation. Our study clearly demonstrate that a better knowledge of deformation patterns can significantly help in the design of an efficient geodetic network.
Maria Vittoria Gargiulo, Ferdinando Napolitano, Ortensia Amoroso, Raffaella Russo, and Paolo Capuano
EGUsphere, https://doi.org/10.5194/egusphere-2022-1231, https://doi.org/10.5194/egusphere-2022-1231, 2022
Preprint archived
Short summary
Short summary
We developed an educational protocol on seismic risk dedicated to high school students combining a seminar with a serious game. By using an evaluation protocol, we managed to assess the impact of our protocol when communicating and teaching the concept of seismic risk on both risk perception and interest in science and geophysics. The results are very encouraging and show that the students perceived the protocol as effective both in the basic concepts of seismology and in risk perception.
Umberto Tammaro, Umberto Riccardi, Vittorio Romano, Michele Meo, and Paolo Capuano
Adv. Geosci., 52, 145–152, https://doi.org/10.5194/adgeo-52-145-2021, https://doi.org/10.5194/adgeo-52-145-2021, 2021
Short summary
Short summary
We simulate the deformation of Somma-Vesuvius volcano due to some overpressure sources by means of a finite element 3D code. The goal of these simulations is to investigate the influence of topography and structural heterogeneity on ground deformation. The results suggest that they are key factors governing the ground deformation. Our study clearly demonstrate that a better knowledge of deformation patterns can significantly help in the design of an efficient geodetic network.
Cited articles
Amoruso, A., Crescentini, L., Sabbetta, I., De Martino, P., Obrizzo, F., and
Tammaro, U.: Clues to the cause of the 2011–2013 Campi Flegrei caldera
unrest, Italy, from continuous GPS data, Geophys. Res. Lett., 41,
3081–3088, https://doi.org/10.1002/2014GL059539, 2014.
Auger, E., Gasparini, P., Virieux, J., and Zollo, A.: Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science, 294, 1510–1512, https://doi.org/10.1126/science.1064893, 2001.
Barberi, F., Corrado, G., Innocenti, F., and Luongo, G.: Phlegraean Fields
1982–1984: brief chronicle of a volcano emergency in a densely populated
area, B. Volcanol., 47, 175–185, https://doi.org/10.1007/BF01961547,
1984.
Berrino, G.: Detection of vertical ground movements by sea-level changes in
the Neapolitan volcanoes, Tectonophysics, 294, 323–332, https://doi.org/10.1016/S0040-1951(98)00109-7, 1998.
Berrino, G., Corrado, G., Luongo, G., and Toro, B.: Ground deformation and
gravity change accompanying the 1982 Pozzuoli uplift, B. Volcanol., 47,
187–200, https://doi.org/10.1007/BF01961548, 1984.
Bevilacqua, A., Isaia, R., Neri, A., Vitale, S., Aspinall, W. P., Bisson,
M., Flandoli, F., Baxter, P. J., Bertagnini, A., Esposti Ongaro, T.,
Iannuzzi, E., Pistolesi, M., and Rosi, M.: Quantifying volcanic hazard at Campi
Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps,
J. Geophys. Res.-Sol. Ea., 120, 2309–2329, https://doi.org/10.1002/2014JB011775,
2015.
Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., and Larnicol, G.: Sea-level
variability in the Mediterranean Sea from altimetry and tide gauges, Clim.
Dynam., 47, 2851–2866, https://doi.org/10.1007/s00382-016-3001-2, 2016.
Caloi, P. and Marcelli, L.: Oscillazioni libere del Golfo di Napoli, Annals of Geophysics, 2, 222–242, https://doi.org/10.4401/ag-5957, 1949.
Capuano, P., De Lauro, E., De Martino, S., and Falanga, M.: Water-level
oscillations in Adriatic sea as coherent self-oscillations inferred by
Independent Component analysis, Prog. Oceanogr., 91, 441–460,
https://doi.org/10.1016/j.pocean.2011.06.001, 2011.
Capuano, P., Russo, G., Civetta, L., Orsi, G., D'Antonio, M., and Moretti, R.:
The active portion of the Campi Flegrei caldera structure imaged by 3-D
inversion of gravity data, Geochem. Geophy. Geosy., 14, 4681–4697,
https://doi.org/10.1002/ggge.20276, 2013.
Cazenave, A., Dieng, H. B., Meyssignac, B., von Schuckmann, K., and Decharme,
B.: The rate of sea-level rise, Nature Clim. Change, 4, 358–361,
https://doi.org/10.1038/nclimate2159, 2014.
Church, J. A., Clark, P.U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Corrado, G. and Luongo, G.: Ground Deformation measurements in Active
Volcanoes Areas using tide gauges, B. Volcanol., 44, 505–511, https://doi.org/10.1007/BF02600581, 1981.
Corrado, G., Guerra, I., Lo Bascio, A., Luongo, G., and Rampoldi, F.:
Inflation and microearthquake activity of Phegraean Fields, Italy, B.
Volcanol., 40, 169–188, https://doi.org/10.1007/BF02596998, 1977.
Cubellis, E., Luongo, G., and Marturano, A.: Seismic hazard assessment at Mt.
Vesuvius: the maximum magnitude expected, J. Volcanol. Geoth. Res., 162,
139–149, https://doi.org/10.1016/j.jvolgeores.2007.03.003, 2007.
Deino, A. L., Orsi, G., de Vita, S., and Piochi, M.: The age of the
Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei
caldera-Italy) assessed by 40Ar/39Ar dating method, J. Volcanol. Geoth.
Res., 133, 157–170, https://doi.org/10.1016/S0377-0273(03)00396-2,
2004.
Del Pezzo, E., Bianco F., and Saccorotti G.: Seismic Source Dynamics at
Vesuvius Volcano, Italy, J. Volcanol. Geoth. Res., 133, 23–39, https://doi.org/10.1016/S0377-0273(03)00389-5, 2004.
De Martino, P., Tammaro, U., and Obrizzo, F.: GPS time series at Campi Flegrei
caldera (2000–2013), Annals of Geophysics, 57, S0213, https://doi.org/10.4401/ag-6431, 2014.
De Natale, G., Troise, C., Trigila, R., Dolfi, D., and Chiarabba, C.: Seismicity
and 3-D substructure at Somma-Vesuvius volcano: evidence for magma quenching,
Earth Planet Sc. Lett., 221, 181–196, https://doi.org/10.1016/S0012-821X(04)00093-7,
2004.
Ducarme, B. and Schüller, K.: Canonical wave grouping as the key to optimal
tidal analysis, Bulletin d'Informations Marees Terrestres (BIM), 150,
12131–12244, available at: http://www.bim-icet.org/ (last access: 20 August 2020), ISSN: 0542–6766, 2018.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Technol., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Fedele, F. G., Giaccio, B., Isaia, R., and Orsi, G.: The Campanian
Ignimbrite eruption, Heinrich Event 4, and the Palaeolithic change in
Europe: A high-resolution investigation, in Volcanism and the Earth's
Atmosphere, edited by Robock, A. and
Oppenheimer, C., AGU, Washington D. C., USA, Geophys. Monogr. Ser., 139, 301–325, 2003.
Galluzzo, D., Del Pezzo, E., La Rocca, M., and Petrosino, S.: Peak Ground
Acceleration produced by local earthquakes in volcanic areas of Campi
Flegrei and Mt. Vesuvius, Annals of Geophysics, 47, 1377–1389, 2004.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea,
M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh,
J.: New Data Systems and Products at the Permanent Service for Mean Sea
Level, J. Coastal Res., 29, 493–504,
https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Isaia, R., Marianelli, P., and Sbrana, A.: Caldera unrest prior to intense
volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera
dynamics and future eruptive scenarios, Geophys. Res. Lett., 36, L21303,
https://doi.org/10.1029/2009GL040513, 2009.
Lanari, R., Berardino, P., Borgstrom, S., Del Gaudio, C., De Martino, P.,
Fornaro, G., Guarino, S., Ricciardi, G. P., Sansosti, E., and Lundgren, P.: The
use of IFSAR and classical geodetic techniques for caldera unrest episodes:
application to the Campi Flegrei uplift event of 2000, J. Volcanol. Geoth.
Res., 133, 247–260, https://doi.org/10.1016/S0377-0273(03)00401-3, 2004.
Landerer, F. W. and Volkov, D. L.: The anatomy of recent large sea level fluctuations in the Mediterranean Sea, Geophys. Res. Lett., 40, 553–557, https://doi.org/10.1002/grl.50140, 2013.
Luongo, G., Cubellis, E., Obrizzo, F., and Petrazzuoli, S. M.: The mechanics
of the Campi Flegrei resurgent caldera – a model, J. Volcanol. Geoth. Res.,
45, 161–172, https://doi.org/10.1016/0377-0273(91)90056-6, 1991.
Macedonio, G., Giudicepietro, F., D'Auria, L., and Martini, M.: Sill intrusion
as a source mechanism of unrest at volcanic calderas, J. Geophys. Res.-Sol.
Ea., 119, 3986–4000, https://doi.org/10.1002/2013JB010868, 2014.
Marianelli, P., Sbrana, A., and Proto, M.: Magma chamber of the Campi
Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite,
Geology, 34, 937–940, https://doi.org/10.1130/G22807A.1, 2006.
Melchior, P.: The Tides of the Planet Earth, Pergamon Press, Paris, France, p. 609,
1978.
Meyssignac, B. and Cazenave, A.: Sea level: A review of present-day and
recent-past changes and variability, J. Geodyn., 58, 96–109,
https://doi.org/10.1016/j.jog.2012.03.005, 2012.
Munk, W. H. and Cartwright, D. E.: Tidal spectroscopy and predication, Philosophical Transactions of the Roy. Soc. of London, 259, 533–581, 1966.
Orsi, G., de Vita, S., and Di Vito, M.: The restless, resurgent Campi
Flegrei nested caldera (Italy): constraints on its evolution and
configuration, J. Volcanol. Geoth. Res., 74, 179–214, https://doi.org/10.1016/S0377-0273(96)00063-7, 1996.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE, Comput. Geosci.,
28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Permanent Service for Mean Sea Level (PSMSL): Obtaining Tide Gauge Data, available at: http://www.psmsl.org/data/obtaining/ (last access: 19 November 2019), 2020.
Petrillo, Z., Chiodini, G., Mangiacapra, A., Caliro, S., Capuano, P., Russo,
G., Cardellini, C., and Avino, R.: Defining a 3D physical model for the
hydrothermal circulation at Campi Flegrei Caldera (Italy), J. Volcanol.
Geoth. Res., 264, 172–182, https://doi.org/10.1016/j.jvolgeores.2013.08.008, 2013.
Pingue, F., Bottiglieri, M., Godano, C., Obrizzo, F., Tammaro, U., Esposito,
T., and Serio, C.: Spatial and temporal distribution of vertical
ground movements at mount Vesuvius (Sothern Italy) in the period 1973–2009,
Annals of Geophysics, 56, S0451, https://doi.org/10.4401/ag-6457, 2013.
Principe, C., Rosi, M., Santacroce, R., and Sbrana, A.: Explanatory notes to
the geological map, in: Somma-Vesuvius, Quaderni de
“La Ricerca Scientifica”, edited by: Santacroce, R., CNR, 114, Progetto finalizzato Geodinamica,
Monografie finali, 8, 11–52, ISSN: 0556-9664, 1987.
Romano, V., Tammaro, U., and Capuano, P.: A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study, Nonlin. Processes Geophys., 19, 323–333, https://doi.org/10.5194/npg-19-323-2012, 2012.
Romano, V., Tammaro, U., Riccardi, U., and Capuano, P.: Non-isothermal momentum
transfer and ground displacements rate at Campi Flegrei caldera (Southern
Italy), Phys. Earth Planet. In., 283, 131–139,
https://doi.org/10.1016/j.pepi.2018.08.010, 2018.
Rosi, M. and Sbrana, A.: Phlegraean Fields, Quaderni de “La Ricerca
Scientifica”, CNR, Roma, 114, 114–175, 1987.
Schüller, K.: Theoretical basis for Earth tide analysis and prediction,
Manual-01-ET34-X-V73, Surin, 2019.
SeaDataNet: Data Quality Control Procedures, version 2.0, available at: http://www.seadatanet.org (last access: 22 November 2016), 2010.
Speich, S. and Mosetti, F.: On the eigenperiods in the Tyrrhenian sea level
oscillations, Il Nuovo Cimento C, 11, 219–228, https://doi.org/10.1007/BF02561734, 1988.
Tammaro, U., De Martino, P., Obrizzo, F., Brandi, G., D'Alessandro, A.,
Dolce, M., Malaspina, S., Serio, C., and Pingue, F.: Somma Vesuvius volcano:
ground deformations from CGPS observations (2001–2012), Annals of Geophysics, 56, S0456, https://doi.org/10.4401/ag-6462, 2013.
The Climate Change Coastal Sea Level Team: A database of coastal sea level
anomalies and associated trends from Jason satellite altimetry from 2002 to
2018, SEANOE, https://doi.org/10.17882/74354, 2020.
Trasatti, E., Polcari, M., Bonafede, M., and Stramondo, S.: Geodetic constraints
to the source mechanism of the 2011–2013 unrest at Campi Flegrei (Italy)
caldera, Geophys. Res. Lett., 42, 3837–3854, https://doi.org/10.1002/2015GL063621, 2015.
Troise, C., De Natale, G., Schiavone, R., Somma, R., and Moretti, R.: The Campi
Flegrei caldera unrest: Discriminating magma intrusions from hydrothermal
effects and implications for possible evolution, Earth-Sci. Rev., 188,
108–122, https://doi.org/10.1016/j.earscirev.2018.11.007, 2019.
Vitagliano, E., Riccardi, U., Piegari, E., Boy, J. P., and Di Maio, R.:
Multi-Component and Multi-Source Approach for Studying Land Subsidence in
Deltas, Remote Sens., 12, 1465, https://doi.org/10.3390/rs12091465,
2020.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54, 64–92,
https://doi.org/10.1002/2015RG000502, 2016.
Zerbini, S., Richter, B., Rocca, F., van Dam, T., and Matonti, F.: A combination
of space and terrestrial geodetic techniques to monitor land subsidence,
Case study, the South Eastern Po Plain, Italy, J. Geophys. Res., 112, B05401,
https://doi.org/10.1029/2006JB004338, 2007.
Short summary
We investigate the oscillations of relative sea level through the analysis of tide gauge records collected in the Gulfs of Pozzuoli and Napoli (Southern Italy). The main goal is to provide a suitable resolution model of the sea tides including seiches, tidal bands and non-linear tides. We also target a non-conventional purpose of the tidal analysis, namely extracting from the tide gauge records the volcano-tectonic signal, the vertical ground displacement in the resurgent Campi Flegrei caldera.
We investigate the oscillations of relative sea level through the analysis of tide gauge records...