Chen, M., Buscheck, T. A., Wagoner, J. L., Sun, Y., White, J. A.,
Chiaramonte, L., and Aines, R. D.: Analysis of fault leakage from Leroy
underground natural gas storage facility, Wyoming, USA, Hydrogeol. J., 21,
1429–1445, https://doi.org/10.1007/s10040-013-1020-1, 2013.
Class, H., Ebigbo, A., Helmig, R., Dahle, H., Nordbotten, J. M., Celia, M.
A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda,
S., Jin, M., Krug, S., Labregere, D., Naderi, A., Pawar, R. J., Sbai, A.,
Thomas, S. G., and Trenty, L.: A benchmark study on problems related to
CO2 storage in geological formations: summary and discussion of the
results, Comput. Geosci., 13, 409–434, https://doi.org/10.1007/s10596-009-9146-x, 2009.
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure
and mechanics of large strike-slip fault zones: field observations of the
Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251,
https://doi.org/10.1016/S0040-1951(03)00134-3, 2003.
Fisher, Q. J. and Knipe, R. J.: The permeability of faults within
siliciclastic petroleum reservoirs of the North Sea and Norwegian
Continental Shelf, Mar. Petrol. Geol., 18, 1063–1081,
https://doi.org/10.1016/S0264-8172(01)00042-3, 2001.
Flodin, E. A., Gerdes, M., Aydin, A., and Wiggins, W. D.: Petrophysical
properties of cataclastic fault rock in sandstone, AAPG Mem., 85, 197–217,
2005.
Folga, S., Portante, E., Shamsuddin, S., Tompkins, A., Talaber, L.,
McLamore, M., Kavicky, J., Conzelmann, G., and Levin, T.: U.S. Natural Gas
Storage Risk-Based Ranking Methodology and Results, Argonne National
Laboratory, United States, 122 pp., 2016.
Fossen, H., Schultz, R. A., Shipton, Z. K., and Mair, K.: Deformation bands
in sandstone: a review, J. Geol. Soc. London, 164, 755–769,
https://doi.org/10.1144/0016-76492006-036, 2007.
Fredman, N., Tveranger, J., Semshaug, S., Braathen, A., and Sverdrup, E.:
Sensitivity of fluid flow to fault core architecture and petrophysical
properties of fault rocks in siliciclastic reservoirs: a synthetic fault
model study, Pet. Geosci., 13, 305–320, https://doi.org/10.1144/1354-079306-721, 2007.
Gibson, R. G.: Physical character and fluid-flow properties of sandstone
derived fault gouge, J. Geol. Soc. London Spec. Publ., 127, 83–98,
https://doi.org/10.1144/GSL.SP.1998.127.01.07, 1998.
Hese, F.: 3D Modellierungen und Visualisierung von Untergrundstrukturen
für die Nutzung des unterirdischen Raumes in Schleswig-Holstein, Kiel
University, Kiel, 164 pp., 2012.
IPCC: Climate Change 2014: Mitigation of Climate Change, Working Group III
Contribution to the IPCC Fifth Assessment Report, Cambridge University
Press, Cambridge, 2015.
Kabuth, A., Dahmke, A., Beyer, C., Bilke, L., Dethlefsen, F., Dietrich, P.,
Duttmann, R., Ebert, M., Feeser, V., Görke, U. J., Köber, R.,
Rabbel, W., Schanz, T., Schäfer, D., Würdemann, H., and Bauer, S.:
Energy storage in the geological subsurface: dimensioning, risk analysis and
spatial planning: the ANGUS
+ project, Environ. Earth Sci., 76, 1–17,
https://doi.org/10.1007/s12665-016-6319-5, 2017.
Kempka, T., Herd, R., Huenges, E., Endler, R., Jahnke, C., Janetz, S.,
Jolie, E., Kühn, M., Magri, F., Meinert, P., Moeck, I., Möller, M.,
Muñoz, G., Ritter, O., Schafrik, W., Schmidt-Hattenberger, C., Tillner,
E., Voigt, H.-J., and Zimmermann, G.: Joint Research Project Brine: Carbon
Dioxide Storage in Eastern Brandenburg: Implications for Synergetic
Geothermal Heat Recovery and Conceptualization of an Early Warning System
Against Freshwater Salinization, Geological Storage of
CO2 – Long Term
Security Aspects, Geotechnologien Science Report, 22, Advanced Technologies
in Earth Sciences, Springer International Publishing, 139–166,
https://doi.org/10.1007/978-3-319-13930-2_9, 2015.
Knipe, R. J., Fisher, Q. J., Jones, G., Clennell, M. R., Farmer, A. B.,
Kidd, B., McAllister, E., Porter, J. R., and White, E. A.: Fault seal
analysis, successful methodologies, application and future directions, NPF
Spec. Publ., 7, 15–38, https://doi.org/10.1016/S0928-8937(97)80004-5, 1997.
Lehné, R. and Sirocko, F.: Quantification of recent movement potentials
in Schleswig-Holstein (Germany) by GIS-based calculation of correlation
coefficients, Int. J. Earth Sci., 94, 1094–1102,
https://doi.org/10.1007/s00531-005-0043-9, 2005.
Leverett, M. C.: Capillary behaviour in porous solids, Trans. AIME, 142,
159–169, https://doi.org/10.2118/941152-G, 1941.
Manzocchi, T., Walsh, J. J., Nell, P., and Yielding, G.: Fault
transmissibility multipliers for flow simulation models, Pet. Geosci., 5,
53–63, https://doi.org/10.1144/petgeo.5.1.53, 1999.
Matos, C. R., Carneiro, J. F., and Silva, P. P.: Overview of large-scale
underground energy storage technologies for integration of renewable
energies and criteria for reservoir identification review, J. Energy
Storage, 21, 241–258, https://doi.org/10.1016/j.est.2018.11.023, 2019.
MELUR: Erneuerbare Energien in Zahlen für Schleswig-Holstein.
Versorgungsbeitrag in den Jahren 2006–2016, Ministerium für
Energiewende, Landwirtschaft, Umwelt und ländliche Räume
Schleswig-Holstein (MELUR), Kiel, Germany, 46 pp., 2018.
Mouli-Castillo, J., Wilkinson, M., Mignard, D., McDermott, C., Haszeldine,
R. S., and Shipton, Z. K.: Inter-seasonal compressed-air energy storage using
saline aquifers, Nat. Energy, 4, 131–139, https://doi.org/10.1038/s41560-018-0311-0,
2019.
Oldenburg, C. M., Unger, A. J. A., Hepple, R. P., and Jordan, P. D.: On
leakage and seepage from geological carbon sequestration sites, Lawrence
Berkeley National Laboratory, United States, 60 pp., 2002.
Pfeiffer, W. T., Beyer, C., and Bauer, S.: Hydrogen storage in a
heterogeneous sandstone formation: dimensioning and induced hydraulic
effects, Pet. Geosci., 23, 315–326, https://doi.org/10.1144/petgeo2016-050, 2017.
Reinhold, K., Krull, P., Kockel, F., and Rätz, J.:
Salzstrukturen Norddeutschlands: Geologische Karte,
1:500 000, Bundesanstalt
für Geowissenschaften und Rohstoffe, Hannover, 2008.
Rinaldi, A. P., Jeanne, P., Rutqvist, J., Cappa, F., and Guglielmi, Y.:
Effects of fault zone architecture on earthquake magnitude and gas leakage
related to
CO2 injection in a multilayered sedimentary system, Greenh.
Gas. Sci. Tech., 4, 99–120, https://doi.org/10.1002/ghg.1403, 2014a.
Rinaldi, A. P., Rutqvist, J., and Cappa, F.: Geomechanical effects on
CO2 leakage through fault zones during large-scale underground
injection, Int. J. Greenh. Gas Control, 20, 117–131,
https://doi.org/10.1016/j.ijggc.2013.11.001, 2014b.
Sainz-Garcia, A., Abarca, E., Rubi, V., and Grandia, F.: Assessment of
feasible strategies for seasonal underground hydrogen storage in a saline
aquifer, Int. J. Hydrogen Energ., 42, 16657–16666,
https://doi.org/10.1016/j.ijhydene.2017.05.076, 2017.
Schäfer, F., Walter, L., Class, H., and Müller, C.: Regionale
Druckentwicklung bei der Injektion von
CO2 in salinare Aquifere,
Abschlußbericht des Projektes
CO2-Drucksimulation, Bundesanstalt
für Geowissenschaften und Rohstoffe, Hannover, 59 pp., 2010.
Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., and Stolten,
D.: Power to gas: Technological overview, systems analysis and economic
assessment for a case study in Germany, Int. J. Hydrogen Energ., 40,
4285–4294, https://doi.org/10.1016/j.ijhydene.2015.01.123, 2015.
Schlumberger Ltd.: Eclipse Reservoir Simulation Software v2017.2, Technical
Description Manual, Houston, United States, 2017.
Shipton, Z. K. and Cowie, P. A.: Damage zone and slip-surface evolution over
µm to km scales in high-porosity Navajo sandstone, Utah, J. Struct.
Geol., 23, 1825–1844, https://doi.org/10.1016/S0191-8141(01)00035-9, 2001.
Sopher, D., Juhlin, C., Levendal, T., Erlström, M., Nilsson, K., and Da
Silva Soares, J. P.: Evaluation of the subsurface compressed air energy
storage (CAES) potential on Gotland, Sweden, Environ. Earth Sci., 78, 1–17,
https://doi.org/10.1007/s12665-019-8196-1, 2019.
Torabi, A., Fossen, H., and Braathen, A.: Insight into petrophysical
properties of deformed sandstone reservoirs, AAPG Bull., 97, 619–637,
https://doi.org/10.1306/10031212040, 2013.
Wang, B. and Bauer, S.: Compressed air energy storage in porous formations:
a feasibility and deliverability study, Pet. Geosci., 23, 306–314,
https://doi.org/10.1144/petgeo2016-049, 2017.