Articles | Volume 49
https://doi.org/10.5194/adgeo-49-1-2019
https://doi.org/10.5194/adgeo-49-1-2019
05 Jul 2019
 | 05 Jul 2019

Modelling fault reactivation with characteristic stress-drop terms

Martin Beck and Holger Class

Related authors

Modelling of hydrodynamic and solute transport with consideration of the release of low-level radioactive substances
Roman Winter, Bernd Flemisch, Holger Class, and Rainer Merk
Saf. Nucl. Waste Disposal, 1, 31–31, https://doi.org/10.5194/sand-1-31-2021,https://doi.org/10.5194/sand-1-31-2021, 2021
Conceptual model development using a generic Features, Events, and Processes (FEP) database for assessing the potential impact of hydraulic fracturing on groundwater aquifers
Alexandru Tatomir, Christopher McDermott, Jacob Bensabat, Holger Class, Katriona Edlmann, Reza Taherdangkoo, and Martin Sauter
Adv. Geosci., 45, 185–192, https://doi.org/10.5194/adgeo-45-185-2018,https://doi.org/10.5194/adgeo-45-185-2018, 2018
Short summary
Regional-scale brine migration along vertical pathways due to CO2 injection – Part 1: The participatory modeling approach
Dirk Scheer, Wilfried Konrad, Holger Class, Alexander Kissinger, Stefan Knopf, and Vera Noack
Hydrol. Earth Syst. Sci., 21, 2739–2750, https://doi.org/10.5194/hess-21-2739-2017,https://doi.org/10.5194/hess-21-2739-2017, 2017
Short summary
Regional-scale brine migration along vertical pathways due to CO2 injection – Part 2: A simulated case study in the North German Basin
Alexander Kissinger, Vera Noack, Stefan Knopf, Wilfried Konrad, Dirk Scheer, and Holger Class
Hydrol. Earth Syst. Sci., 21, 2751–2775, https://doi.org/10.5194/hess-21-2751-2017,https://doi.org/10.5194/hess-21-2751-2017, 2017
Short summary
Experimental study on retardation of a heavy NAPL vapor in partially saturated porous media
Simon Matthias Kleinknecht, Holger Class, and Jürgen Braun
Hydrol. Earth Syst. Sci., 21, 1381–1396, https://doi.org/10.5194/hess-21-1381-2017,https://doi.org/10.5194/hess-21-1381-2017, 2017
Short summary

Cited articles

Abercrombie, R. and Leary, P.: Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: Implications for earthquake scaling, Geophys. Res. Lett., 20, 1511–1514, https://doi.org/10.1029/93GL00367, 1993. a
Aki, K.: Earthquake mechanism, Tectonophysics, 13, 423–446, https://doi.org/10.1016/0040-1951(72)90032-7, 1972. a
Beck, M.: Conceptual approaches for the analysis of coupled hydraulic and geomechanical processes, PhD thesis, Universität Stuttgart, 2019. a
Beck, M. and Class, H.: Beck2019b, source code, available at: https://git.iws.uni-stuttgart.de/dumux-pub/beck2019b, last access: 28 June 2019. 
Beck, M., Seitz, G., and Class, H.: Volume-Based Modelling of Fault Reactivation in Porous Media Using a Visco-Elastic Proxy Model, Transport Porous Med., 114, 505–524, https://doi.org/10.1007/s11242-016-0663-5, 2016. a, b
Download
Short summary
Fluid injection in a geologic layer shifts pressure and stress conditions and may trigger the reactivation of pre-existing faults. We present an approach to describe changes in the stress-field upon such an induced seismic event by applying characteristic stress-drop terms based on reported literature values for a great variety of earthquakes, even at very different magnitudes. The article illustrates exemplary results and discusses also the effect of permeability on expectable seismicity.