Bauwe, A., Tiedemann, S., Kahle, P., and Lennartz, B.: Does the Temporal
Resolution of Precipitation Input Influence the Simulated Hydrological
Components Employing the SWAT Model?, J. Am. Water Resour. As., 53,
997–1007, https://doi.org/10.1111/1752-1688.12560, 2017.
BMUB: Nitratbericht 2016, Bundesministerien für Umwelt, Naturschutz, Bau
und Reaktorsicherheit und Bundesministerium für Ernährung und
Landwirtschaft, Bonn, Deutschland, available at:
https://www.bmu.de/fileadmin/Daten_
BMU/Download_PDF/Binnengewaesser/nitratbericht_2016_bf.pdf (last access:
2 October 2018), 2017.
Di, H. J. and Cameron, K. C.: Nitrate leaching in temperate agroecosystems:
Sources, factors and mitigating strategies, Nutr. Cycl. Agroecosys., 64,
237–256, https://doi.org/10.1023/A:1021471531188, 2002.
Diacono, M., Rubino, P., and Montemurro, F.: Precision nitrogen management of
wheat. A review, Agron. Sustain. Dev., 33, 219–241,
https://doi.org/10.1007/s13593-012-0111-z, 2013.
European Parliament and European Council: Directive 2000/60/EC of the
European Parliament and of the Council of October 2000 Establishing a
Framework for Community Action in the Field of Water Policy, Official Journal
of the European Communities, L327, 1–73, 2000.
Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, J. G.: The Soil and
Water Assessment Tool: historical development, applications, and future
research directions, T. ASABE, 50, 1211–1250, 2007.
Guo, T., Cibin, R., Chaubey, I., Gitau, M., Arnold, J. G., Srinivasan, R.,
Kiniry, J. R., and Engel, B. A.: Evaluation of bioenergy crop growth and the
impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses
in an extensively tile-drained watershed using SWAT, Sci. Total Environ.,
613–614, 724–735, https://doi.org/10.1016/j.scitotenv.2017.09.148, 2018.
Hu, X., McIsaac, G. F., David, M. B., and Louwers, C. A. L.: Modeling
riverine nitrate export from an east-central Illinois watershed using SWAT,
J. Environ. Qual., 36, 996–1005, https://doi.org/10.2134/jeq2006.0228, 2007.
Kahle, P., Bauwe, A., and Lennartz, B.: Overview about investigations on
nutrient losses in the tile-drained lowland catchment Zarnow
(Mecklenburg-Western Pomerania), Hydrol. Wasserbewirts., 62, 159–172,
https://doi.org/10.5675/HyWa_20183_3, 2018.
Lawlor, P. A., Helmers, M. J., Baker, J. L., Melvin, S. W., and Lemke, D. W.:
Nitrogen application rate effect on nitrate-nitrogen concentration and loss
in subsurface drainage for a corn-soybean rotation, T. ASABE, 51, 83–94,
2008.
Liang, H., Qi, Z., Hu, K., Li, B., and Prasher, S. O.: Modelling subsurface
drainage and nitrogen losses from artificially drained cropland using coupled
DRAINMOD and WHCNS models, Agr. Water Manage., 195, 201–210,
https://doi.org/10.1016/j.agwat.2017.10.011, 2018.
LUNG-MV: Konzeptbodenkarte
1:25 000, State Agency for the Environment,
Nature Conservation and Geology of Mecklenburg-Western Pomerania,
Güstrow, Germany, 2010.
LVA M-V: Digital Elevation Model grid size
25×25 m, Land survey
office Mecklenburg-Western Pomerania, Schwerin, Germany, 2000.
Maier, N. and Dietrich, J.: Using SWAT for Strategic Planning of Basin Scale
Irrigation Control Policies: a Case Study from a Humid Region in Northern
Germany, Water Resour. Manage., 30, 3285–3298,
https://doi.org/10.1007/s11269-016-1348-0, 2016.
Malagó, A., Bouraoui, F., Vigiak, O., Grizzetti, B., and Pastori, M.:
Modelling water and nutrient fluxes in the Danube River Basin with SWAT, Sci.
Total Environ., 603–604, 196–218, https://doi.org/10.1016/j.scitotenv.2017.05.242,
2017.
Moriasi, D., Pai, N., and Daggupati, P.: Hydrologic and water quality models:
Performance measures and evaluation criteria, T. ASABE, 58, 1763–1785,
https://doi.org/10.13031/trans.58.10715, 2015.
Nair, S. S., King, K. W., Witter, J. D., Sohngen, B. L., and Fausey, N. R.:
Importance of crop yield in calibrating watershed water quality simulation
tools, J. Am. Water Resour. As., 47, 1285–1297,
https://doi.org/10.1111/j.1752-1688.2011.00570.x, 2011.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and
Water Assessment Tool: theoretical documentation, Texas Water Resources
Institute Technical Report No. 406, Temple, USA, 2011.
Sinnathamby, S., Douglas-Mankin, K. R., and Craige, C.: Field-scale
calibration of crop-yield parameters in the Soil and Water Assessment Tool
(SWAT), Agr. Water Manage., 180, 61–69, https://doi.org/10.1016/j.agwat.2016.10.024,
2017.
Tiemeyer, B., Kahle, P., and Lennartz, B.: Nutrient losses from artificially
drained catchments in North-Eastern Germany at different scales, Agr. Water
Manage., 85, 47–57, https://doi.org/10.1016/j.agwat.2006.03.016, 2006.
van Grinsven, H. J. M., ten Berge, H. F. M., Dalgaard, T., Fraters, B.,
Durand, P., Hart, A., Hofman, G., Jacobsen, B. H., Lalor, S. T. J., Lesschen,
J. P., Osterburg, B., Richards, K. G., Techen, A.-K., Vertés, F., Webb, J.,
and Willems, W. J.: Management, regulation and environmental impacts of
nitrogen fertilization in northwestern Europe under the Nitrates Directive; a
benchmark study, Biogeosciences, 9, 5143–5160,
https://doi.org/10.5194/bg-9-5143-2012, 2012.
Wang, H., Zhang, Y., Chen, A., Liu, H., Zhai, L., Lei, B., and Ren, T.: An
optimal regional nitrogen application threshold for wheat in the North China
Plain considering yield and environmental effects, Field Crop Res., 207,
52–61, https://doi.org/10.1016/j.fcr.2017.03.002, 2017.
Zhou, M. and Butterbach-Bahl, K.: Assessment of nitrate leaching loss on a
yield-scaled basis from maize and wheat cropping systems, Plant Soil, 374,
977–991, https://doi.org/10.1007/s11104-013-1876-9, 2014.