Articles | Volume 45
https://doi.org/10.5194/adgeo-45-63-2018
https://doi.org/10.5194/adgeo-45-63-2018
02 Aug 2018
 | 02 Aug 2018

Preliminary study on geo-mechanical aspects of SSiC canisters

Ya-Nan Zhao, Heinz Konietzky, Jürgen Knorr, and Albert Kerber

Related authors

BARIK: laboratory programme within the framework of the development of an extended Hoek–Brown-based anisotropic constitutive model for fractured crystalline rock
Max Friedel, Fabian Weber, Heinz Konietzky, Paola Rocio León Vargas, Alireza Hassanzadegan, and Michael Rahmig
Saf. Nucl. Waste Disposal, 2, 63–63, https://doi.org/10.5194/sand-2-63-2023,https://doi.org/10.5194/sand-2-63-2023, 2023
Short summary
AREHS: effects of changing boundary conditions on the development of hydrogeological systems: numerical long-term modelling considering thermal–hydraulic–mechanical (–chemical) coupled effects
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedtke, Tobias Meisel, Florian Zill, Anton Carl, Aron D. Gabriel, and Marcel Schlegel
Saf. Nucl. Waste Disposal, 2, 117–118, https://doi.org/10.5194/sand-2-117-2023,https://doi.org/10.5194/sand-2-117-2023, 2023
Short summary
BARIK: an extended Hoek–Brown-based anisotropic constitutive model for fractured crystalline rock
Rocio Paola León Vargas, Max Friedel, Alireza Hassanzadegan, Michael Rahmig, Fabian Weber, and Heinz Konietzky
Saf. Nucl. Waste Disposal, 2, 119–120, https://doi.org/10.5194/sand-2-119-2023,https://doi.org/10.5194/sand-2-119-2023, 2023
Short summary
AREHS: effects of changing boundary conditions on the development of hydrogeological systems: numerical long-term modelling considering thermal–hydraulic–mechanical(–chemical) coupled effects
René Kahnt, Heinz Konietzky, Thomas Nagel, Olaf Kolditz, Andreas Jockel, Christian B. Silbermann, Friederike Tiedke, Tobias Meisel, Karsten Rink, Wenqing Wang, Florian Zill, Antje Carl, Aron D. Gabriel, Marcel Schlegel, and Torsten Abraham
Saf. Nucl. Waste Disposal, 1, 175–177, https://doi.org/10.5194/sand-1-175-2021,https://doi.org/10.5194/sand-1-175-2021, 2021
Short summary

Cited articles

Bassett, W. A., Weathers, M. S., and Wu, T. C.: Compressibility of SiC up to 68.4 GPa, J. Appl. Phys., 74, 3824, https://doi.org/10.1063/1.354476, 1993. 
Crystran: Sodium Chloride (NaCl), available at: https://www.crystran.co.uk/optical-materials/sodium-chloride-nacl (last access: 24 July 2018), 2012. 
Dandekar, D. P.: A Survey of Compression Studies of Silicon Carbide (SiC), ARL-TR-2695, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA, 2002. 
Griffith, A. A.: The theory of rupture, Proc. 1st Internat. Congr. Appl. Mech., Delft, the Netherlands, 55–63, 1924. 
Holmquist, T. J., Rajendran, A. M., Templeton, D. W., and Bishnoi, K. D.: A Ceramics Armor Material Database, TARDEC Technical Report, TRADEC, USA, January, 1999. 
Download
Short summary
Silicon carbide is seen as a possible replacement for metals as canister material in geological disposal of radioactive waste. The performed calculations on a small model underline the concept that the SSiC canister alone sustains definite loading of the host rock, but should be protected generally by a mechanically robust over pack preferably made of carbon concrete to complete a final waste package for all types of host rocks (shared and split functionality in TRIPLE C concept).