Gunn, A. D., Marsh. H. S., Gibson, A., Ager, G. J., McManus, K. B., Caunt, S.,
and Culshaw. G. M.: Remote thermal IR surveying to detect abandoned mineshafts
in former mining areas', Eng. Geol. Hydrogeol., 41, 357–370, 2008.
Huete, A. R., Liu, H. Q., Batchily, K., and Van Leeuwen, W.: A comparison of
vegetation indices over a global set of TM images for EOS-MODIS, Remote Sens.
Environ., 59, 440–451, 1997.
Jordan, C. F.: Derivation of leaf area index from quality of light on the forest
floor, Ecology, 50, 663–666, 1969.
Lasaponara, R. and Masini, N.: Identification of archaeological buried remains
based on Normalized Difference Vegetation Index (NDVI) from Quickbird satellite
data, IEEE Geosci. Remote Sens., 3, 325–328, 2006.
Melillos, G., Themistocleous, K., Papadavid, G., Agapiou, A., Michaelides, S.,
Prodromou, M., and Hadjimitsis, D. G.: Integrated use of field spectroscopy and
satellite Remote Sensing for defence and security applications in Cyprus,
in: Proceedings of SPIE – The International Society for Optical Engineering,
Bellingham, USA, 2016a.
Melillos, G., Themistocleous, K., Papadavid, G., Agapiou, A., Prodromou, M.,
Michaelides, S., and Hadjimitsis, D. G.: Importance of using field spectroscopy
to support the satellite remote sensing for underground structures intended for
security reasons in the eastern Mediterranean region, Electro-Opt. Remote Sens.,
9988, 99880S, https://doi.org/10.1117/12.2240714, 2016b.
Milton, E. J. and Rollin, E. M.: Estimating the irradiance spectrum from
measurements in a limited number of spectral bands, Remote Sens. Environ.,
100, 348–355, 2006.
Mróz, M. and Sobieraj, A.: Comparison of several vegetation indices
calculated on the basis of a seasonal SPOT XS time series, and their
suitability for land cover and agricultural crop identification, Technical
Sciences, 7, 39–66, 2004.
Papadavid, G., Hadjimitsis, D., Fedra, K., and Michaelides, S.: Smart management
and irrigation demand monitoring in Cyprus, using remote sensing and water
resources simulation and optimization, Adv. Geosci., 30, 31–37, https://doi.org/10.5194/adgeo-30-31-2011, 2011.
Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted
vegetation indices, Remote Sens., Environ., 55, 95–107, 1996.
Roujean, J. L. and Breon, F. M.: Estimating PAR absorbed by vegetation from
bidirectional reflectance measurements, Remote Sens. Environ., 51, 375–384, 1995.
Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., and Harlan, J. C.:
Monitoring the Vernal Advancements and Retrogradation (Greenwave Effect) of
Nature Vegetation, Carbohyd. Polym., 32, 65–72, https://doi.org/10.1016/s0144-8617(96)00105-1, 1974.
Sepp, E. M.: Deeply Buried Facilities Operations: Implications for Military
Operations, Center for Strategy and Technology, Air War College, Montgomery,
Alabama, USA, 38 pp., available at:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a425461.pdf
(last access: November 2018), 2000.
Steven, M. D., Malthus, T. J., Baret, F., Xu, H., and Chopping, M. J.:
Intercalibration of vegetation indices from different sensor systems, Remote
Sens., Environ., 88, 412–422, 2003.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring
vegetation, Remote Sens. Environ., 8, 127–150, 1979.
USGS: What are the band designations for the Landsat satellites? Landsat
Missions, available at:
https://landsat.usgs.gov/using-usgs-spectral-viewer,
last access: 5 June 2018.
Winton, H. and Horne, P.: National archives for national survey programmes: NMP
and the English heritage aerial photograph collection, in: Landscapes through
the Lens, Aerial Photographs and Historic Environment, Aerial Archaeology
Research Group, edited by: Cowley, D. C., Standring, R. A., and Abicht, M. J.,
Oxbow Books, Oxford, Oakville, UK, 7–18, 2010.