Monitoring military landscapes and detection of underground man-made critical infrastructures in Cyprus using Earth Observation
George Melillos
CORRESPONDING AUTHOR
Cyprus University of Technology, Department of Civil Engineering and Geomatics, 30 Archbishop Kyprianou Str., 3036 Lemesos, Cyprus
Athos Agapiou
Cyprus University of Technology, Department of Civil Engineering and Geomatics, 30 Archbishop Kyprianou Str., 3036 Lemesos, Cyprus
Silas Michaelides
Cyprus University of Technology, Department of Civil Engineering and Geomatics, 30 Archbishop Kyprianou Str., 3036 Lemesos, Cyprus
Diofantos G. Hadjimitsis
Cyprus University of Technology, Department of Civil Engineering and Geomatics, 30 Archbishop Kyprianou Str., 3036 Lemesos, Cyprus
Related authors
No articles found.
Marios Tzouvaras, Constantinos Panagiotou, Nicholas Kyriakides, Maria Prodromou, Panagiotis Vasiliou, Marina Doukanari, Kyriaki Fotiou, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1485–1491, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025, 2025
Hossein Panahifar, Maria Poutli, George Kotsias, Argyro Nisantzi, Silas Michaelides, Diofantos Hadjimitsis, Patric Seifert, Albert Ansmann, and Rodanthi-Elisavet Mamouri
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1153–1158, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025, 2025
Maria Prodromou, Marios Tzouvaras, Christodoulos Mettas, Andreas Konstantinidis, Andreas Pamboris, Iasonas Iasonos, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1215–1222, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025, 2025
Konstantinos Christofi, Charalambos Chrysostomou, Iason Tsardanidis, Michalis Mavrovouniotis, Giorgia Guerrisi, Charalampos Kontoes, and Diofantos G. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 295–300, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025, 2025
Eleftheria Kalogirou, Konstantinos Christofi, Despoina Makri, Muhammad Amjad Iqbal, Valeria La Pegna, Marios Tzouvaras, Christodoulos Mettas, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 757–764, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025, 2025
Christos Theocharidis, Marinos Eliades, Kyriacos Themistocleous, Kyriacos Neocleous, Charalampos Kontoes, and Diofantos Hadjimitsis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 879–884, https://doi.org/10.5194/isprs-annals-X-G-2025-879-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-879-2025, 2025
Kyriakos Michaelides, Stylianos Hadjipetrou, Athos Agapiou, Apostolos Sarris, Victor Klinkenberg, and Miltiadis Polidorou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 67–74, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-67-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-67-2025, 2025
Dimitrios Skarlatos, Branka Cuca, Georgios Kafataris, Mattia Previtali, and Athos Agapiou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 425–430, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-425-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-425-2024, 2024
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
G. Giannarakis, I. Tsoumas, S. Neophytides, C. Papoutsa, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1379–1384, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, 2023
M. Tzouvaras, S. Alatza, M. Prodromou, C. Theocharidis, K. Fotiou, A. Argyriou, C. Loupasakis, A. Apostolakis, Z. Pittaki, M. Kaskara, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1581–1587, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, 2023
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
A. Agapiou, Y. Aktas, L. Barazzetti, A. Costa, B. Cuca, D. D’Ayala, N. Kyriakides, P. Kyriakidis, V. Lysandrou, D. Oreni, M. Previtali, D. Skarlatos, A. Tavares, and M. Vlachos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 27–32, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, 2023
M. Prodromou, D. Cerra, K. Themistocleous, G. Schreier, T. Krauss, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 263–269, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, 2023
Silas Michaelides and Charalampos Kontoes
Adv. Geosci., 47, 17–19, https://doi.org/10.5194/adgeo-47-17-2019, https://doi.org/10.5194/adgeo-47-17-2019, 2019
Evagoras Evagorou, Christodoulos Mettas, Athos Agapiou, Kyriacos Themistocleous, and Diofantos Hadjimitsis
Adv. Geosci., 45, 397–407, https://doi.org/10.5194/adgeo-45-397-2019, https://doi.org/10.5194/adgeo-45-397-2019, 2019
Short summary
Short summary
Freely and open distributed optical satellite images used to obtain bathymetric data for shallow waters based on timeseries analysis of multispectral Sentinel-2 datasets. The ratio transform algorithm was implemented for twelve monthly images covering a year. Bathymetric maps were generated and compared with LIDAR measurements. The results showed that bathymetry can be obtained from satellite data within a Root Mean Square Error while more accurate results were generated during the summer.
Thomas Dimopoulos, Hristos Tyralis, Nikolaos P. Bakas, and Diofantos Hadjimitsis
Adv. Geosci., 45, 377–382, https://doi.org/10.5194/adgeo-45-377-2018, https://doi.org/10.5194/adgeo-45-377-2018, 2018
Short summary
Short summary
The paper examines a machine learning algorithm (Random Forests) in comparison with Multivariate Linear Regression, for a data-set of 3500 transactions of residential apartments in Nicosia District in Cyprus. The methodology suggested, indicated high accuracy of the Random Forests Method, that can be applied in automated valuation models and CAMA systems.
Christina Oikonomou, Filippos Tymvios, Christos Pikridas, Stylianos Bitharis, Kyriakos Balidakis, Silas Michaelides, Haris Haralambous, and Demetris Charalambous
Adv. Geosci., 45, 363–375, https://doi.org/10.5194/adgeo-45-363-2018, https://doi.org/10.5194/adgeo-45-363-2018, 2018
Short summary
Short summary
Tropospheric delay comprises one of the most important error sources in satellite navigation and is caused when radio signals broadcasted by GPS satellites propagate into the atmosphere. This study aims to evaluate the tropospheric delay performance for GNSS integrated water vapor (IWV) estimation by using GPT2w model, ECMWF's IFS reanalysis model and ground meteorological data from two stations of the permanent network of Cyprus and Greece.
Maroula N. Alverti, Kyriakos Themistocleous, Phaedon C. Kyriakidis, and Diofantos G. Hadjimitsis
Adv. Geosci., 45, 305–320, https://doi.org/10.5194/adgeo-45-305-2018, https://doi.org/10.5194/adgeo-45-305-2018, 2018
Short summary
Short summary
The scientific objective is to find a simple understandable model linking human smart characteristics to a group of socio-demographic and urban environment indices, applied to the case of Limassol Urban Complex, Cyprus. The results reveal that the human smart characteristics are significantly correlated with demographic dynamics and built infrastructure characteristics. For instance creativity and open-mindedness appear in most densely urban areas.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Argyro Nisantzi, Stavros Solomos, George Kallos, and Diofantos G. Hadjimitsis
Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, https://doi.org/10.5194/acp-16-13711-2016, 2016
M. Sicard, G. D'Amico, A. Comerón, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, J. M. Baldasano, L. Belegante, I. Binietoglou, J. A. Bravo-Aranda, A. J. Fernández, P. Fréville, D. García-Vizcaíno, A. Giunta, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. E. Mamouri, I. Mattis, F. Molero, N. Montoux, A. Muñoz, C. Muñoz Porcar, F. Navas-Guzmán, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A. Papayannis, S. Pereira, J. Preißler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V. Simeonov, G. Tsaknakis, F. Wagner, and G. Pappalardo
Atmos. Meas. Tech., 8, 4587–4613, https://doi.org/10.5194/amt-8-4587-2015, https://doi.org/10.5194/amt-8-4587-2015, 2015
Short summary
Short summary
In the framework of the ACTRIS summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. The paper describes the measurement protocol and discusses the delivery of real-time and near-real-time lidar-derived products.
A. Nisantzi, R. E. Mamouri, A. Ansmann, G. L. Schuster, and D. G. Hadjimitsis
Atmos. Chem. Phys., 15, 7071–7084, https://doi.org/10.5194/acp-15-7071-2015, https://doi.org/10.5194/acp-15-7071-2015, 2015
V. Vakkari, E. J. O'Connor, A. Nisantzi, R. E. Mamouri, and D. G. Hadjimitsis
Atmos. Meas. Tech., 8, 1875–1885, https://doi.org/10.5194/amt-8-1875-2015, https://doi.org/10.5194/amt-8-1875-2015, 2015
A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis
Atmos. Chem. Phys., 14, 12155–12165, https://doi.org/10.5194/acp-14-12155-2014, https://doi.org/10.5194/acp-14-12155-2014, 2014
D. D. Alexakis, M. G. Grillakis, A. G. Koutroulis, A. Agapiou, K. Themistocleous, I. K. Tsanis, S. Michaelides, S. Pashiardis, C. Demetriou, K. Aristeidou, A. Retalis, F. Tymvios, and D. G. Hadjimitsis
Nat. Hazards Earth Syst. Sci., 14, 413–426, https://doi.org/10.5194/nhess-14-413-2014, https://doi.org/10.5194/nhess-14-413-2014, 2014
Cited articles
Agapiou, A., Hadjimitsis, D. G., and Alexakis, D. D.: Evaluation of broadband
and narrowband vegetation indices for the identification of archaeological
crop marks, Remote Sens., 4, 3892–3919, 2012.
Agapiou, A., Themistocleous, K., Alexakis, D. D., Kourtis, N., Sarris, A.,
Perdikou, S., and Hadjimitsis, D. G.: Variations of spectral signature profiles
of wet and dry targets for supporting the detection of water-leakages using
satellite data, in: Remote Sensing for Agriculture, Ecosystems, and Hydrology XV,
edited by: Neale, C. M. U. and Maltese, A., SPIE, Bellingham, USA, https://doi.org/10.1117/12.2029289, 2013.
Campbell, J. B. and Wynne, R. H.: Introduction to remote sensing, Guilford Press,
New York, USA, 2011.
Chen, J. M.: Evaluation of vegetation indices and a modified simple ratio for
boreal application, Can. J. Remote Sens., 22, 229–242, 1996.
Giardino, M. M.: A history of NASA remote sensing contributions to archaeology,
J. Archaeol. Sci., 38, 2003–2009, 2011.
Gunn, A. D., Marsh. H. S., Gibson, A., Ager, G. J., McManus, K. B., Caunt, S.,
and Culshaw. G. M.: Remote thermal IR surveying to detect abandoned mineshafts
in former mining areas', Eng. Geol. Hydrogeol., 41, 357–370, 2008.
Huete, A. R., Liu, H. Q., Batchily, K., and Van Leeuwen, W.: A comparison of
vegetation indices over a global set of TM images for EOS-MODIS, Remote Sens.
Environ., 59, 440–451, 1997.
Jordan, C. F.: Derivation of leaf area index from quality of light on the forest
floor, Ecology, 50, 663–666, 1969.
Lasaponara, R. and Masini, N.: Identification of archaeological buried remains
based on Normalized Difference Vegetation Index (NDVI) from Quickbird satellite
data, IEEE Geosci. Remote Sens., 3, 325–328, 2006.
Melillos, G., Themistocleous, K., Papadavid, G., Agapiou, A., Michaelides, S.,
Prodromou, M., and Hadjimitsis, D. G.: Integrated use of field spectroscopy and
satellite Remote Sensing for defence and security applications in Cyprus,
in: Proceedings of SPIE – The International Society for Optical Engineering,
Bellingham, USA, 2016a.
Melillos, G., Themistocleous, K., Papadavid, G., Agapiou, A., Prodromou, M.,
Michaelides, S., and Hadjimitsis, D. G.: Importance of using field spectroscopy
to support the satellite remote sensing for underground structures intended for
security reasons in the eastern Mediterranean region, Electro-Opt. Remote Sens.,
9988, 99880S, https://doi.org/10.1117/12.2240714, 2016b.
Milton, E. J. and Rollin, E. M.: Estimating the irradiance spectrum from
measurements in a limited number of spectral bands, Remote Sens. Environ.,
100, 348–355, 2006.
Mróz, M. and Sobieraj, A.: Comparison of several vegetation indices
calculated on the basis of a seasonal SPOT XS time series, and their
suitability for land cover and agricultural crop identification, Technical
Sciences, 7, 39–66, 2004.
Papadavid, G., Hadjimitsis, D., Fedra, K., and Michaelides, S.: Smart management
and irrigation demand monitoring in Cyprus, using remote sensing and water
resources simulation and optimization, Adv. Geosci., 30, 31–37, https://doi.org/10.5194/adgeo-30-31-2011, 2011.
Parker, D. C. and Wolff, M. F.: Remote Sensing, Int. Sci. Technol., 43, 20–31, 1965.
Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted
vegetation indices, Remote Sens., Environ., 55, 95–107, 1996.
Roujean, J. L. and Breon, F. M.: Estimating PAR absorbed by vegetation from
bidirectional reflectance measurements, Remote Sens. Environ., 51, 375–384, 1995.
Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., and Harlan, J. C.:
Monitoring the Vernal Advancements and Retrogradation (Greenwave Effect) of
Nature Vegetation, Carbohyd. Polym., 32, 65–72, https://doi.org/10.1016/s0144-8617(96)00105-1, 1974.
Sepp, E. M.: Deeply Buried Facilities Operations: Implications for Military
Operations, Center for Strategy and Technology, Air War College, Montgomery,
Alabama, USA, 38 pp., available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a425461.pdf
(last access: November 2018), 2000.
Steven, M. D., Malthus, T. J., Baret, F., Xu, H., and Chopping, M. J.:
Intercalibration of vegetation indices from different sensor systems, Remote
Sens., Environ., 88, 412–422, 2003.
Themistocleous, K., Agapiou, A., and Hadjimitsis, D. G.: Unmanned aerial systems
and spectroscopy for remote sensing applications in archaeology, in: Proc.
36th International Symposium on Remote Sensing of Environment, XL-7/W3, Berlin, 2015.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring
vegetation, Remote Sens. Environ., 8, 127–150, 1979.
USGS: What are the band designations for the Landsat satellites? Landsat
Missions, available at: https://landsat.usgs.gov/using-usgs-spectral-viewer,
last access: 5 June 2018.
Winton, H. and Horne, P.: National archives for national survey programmes: NMP
and the English heritage aerial photograph collection, in: Landscapes through
the Lens, Aerial Photographs and Historic Environment, Aerial Archaeology
Research Group, edited by: Cowley, D. C., Standring, R. A., and Abicht, M. J.,
Oxbow Books, Oxford, Oakville, UK, 7–18, 2010.
Wu, X., Sullivan, J. T., and Heidinger, A. K.: Operational calibration of the
Advanced Very High Resolution Radiometer (AVHRR) visible and near-infrared
channels, Can. J. Remote Sens., 36, 602–616, 2010.
Short summary
Field spectroscopy has been used, in order to study possible differences in the spectral signatures of vegetation so to be used for the systematic monitoring of military landscapes that comprise underground military structures. In this paper, underground military structures over vegetated areas were monitored, using both ground and satellite remote sensing data. Several ground measurements have been carried out in military areas, throughout the phenological cycle of plant growth.
Field spectroscopy has been used, in order to study possible differences in the spectral...