An evaluation of the potential of Sentinel 1 for improving flash flood predictions via soil moisture–data assimilation
Scuola Universitaria Superiore IUSS Pavia, Pavia, 27100, Italy
CIMA Research Foundation, Savona, 17100, Italy
Department of Information Engineering, Electronics and
Telecommunications, Sapienza University of Rome, Rome, 00184, Italy
Luca Pulvirenti
CIMA Research Foundation, Savona, 17100, Italy
Giorgio Boni
CIMA Research Foundation, Savona, 17100, Italy
Department of Informatics, Bioengineering, Robotics and Systems
Engineering, University of Genoa, Genoa, 16145, Italy
Marco Chini
Luxembourg Institute of Science and Technology, Belvaux, 4422,
Luxembourg
Patrick Matgen
Luxembourg Institute of Science and Technology, Belvaux, 4422,
Luxembourg
Simone Gabellani
CIMA Research Foundation, Savona, 17100, Italy
Giuseppe Squicciarino
CIMA Research Foundation, Savona, 17100, Italy
Nazzareno Pierdicca
Department of Information Engineering, Electronics and
Telecommunications, Sapienza University of Rome, Rome, 00184, Italy
Related authors
No articles found.
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2207, https://doi.org/10.5194/egusphere-2024-2207, 2024
Short summary
Short summary
Despite droughts are deeply intertwined within sociohydrological systems, traditional top-down approaches often ignore those directly affected. By integrating insights from five research fields, we present a framework to guide the co-creation of knowledge for drought impact assessment. Emphasizing social dynamics and power imbalances, the framework guides a more inclusive approach to drought assessment and adaptation.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Francesca Munerol, Francesco Avanzi, Eleonora Panizza, Marco Altamura, Simone Gabellani, Lara Polo, Marina Mantini, Barbara Alessandri, and Luca Ferraris
Geosci. Commun., 7, 1–15, https://doi.org/10.5194/gc-7-1-2024, https://doi.org/10.5194/gc-7-1-2024, 2024
Short summary
Short summary
To contribute to advancing education in a warming climate and prepare the next generations to play their role in future societies, we designed “Water and Us”, a three-module initiative focusing on the natural and anthropogenic water cycle, climate change, and conflicts. This study aims to introduce the initiative's educational objectives, methods, and early results.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023, https://doi.org/10.5194/tc-17-5317-2023, 2023
Short summary
Short summary
Automatic snow depth data are a valuable source of information for hydrologists, but they also tend to be noisy. To maximize the value of these measurements for real-world applications, we developed an automatic procedure to differentiate snow cover from grass or bare ground data, as well as to detect random errors. This procedure can enhance snow data quality, thus providing more reliable data for snow models.
J. Zhao, F. Roth, B. Bauer-Marschallinger, W. Wagner, M. Chini, and X. X. Zhu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 911–918, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023, 2023
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Flavio Pignone, Giulia Bruno, Luca Pulvirenti, Giuseppe Squicciarino, Elisabetta Fiori, Lauro Rossi, Silvia Puca, Alexander Toniazzo, Pietro Giordano, Marco Falzacappa, Sara Ratto, Hervè Stevenin, Antonio Cardillo, Matteo Fioletti, Orietta Cazzuli, Edoardo Cremonese, Umberto Morra di Cella, and Luca Ferraris
Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, https://doi.org/10.5194/essd-15-639-2023, 2023
Short summary
Short summary
Snow cover has profound implications for worldwide water supply and security, but knowledge of its amount and distribution across the landscape is still elusive. We present IT-SNOW, a reanalysis comprising daily maps of snow amount and distribution across Italy for 11 snow seasons from September 2010 to August 2021. The reanalysis was validated using satellite images and snow measurements and will provide highly needed data to manage snow water resources in a warming climate.
Giulia Bruno, Doris Duethmann, Francesco Avanzi, Lorenzo Alfieri, Andrea Libertino, and Simone Gabellani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-416, https://doi.org/10.5194/hess-2022-416, 2022
Manuscript not accepted for further review
Short summary
Short summary
Hydrological models often have issues during droughts. We used the distributed Continuum model over the Po river basin and independent datasets of streamflow (Q), evapotranspiration (ET), and storage. Continuum simulated Q well during wet years and moderate droughts. Performances declined for a severe drought and we explained this drop with an increased uncertainty in ET anomalies in human-affected croplands. These findings provide guidelines for assessments of model robustness during droughts.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Theresa C. van Hateren, Marco Chini, Patrick Matgen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-583, https://doi.org/10.5194/hess-2020-583, 2020
Manuscript not accepted for further review
Short summary
Short summary
Agricultural droughts occur when the water content of the soil diminishes to such a level that vegetation is negatively impacted. Here we show that, although they are classified as the same type of drought, substantial differences between soil moisture and vegetation droughts exist. This duality is not included in the term agricultural drought, and thus is a potential issue in drought research. We argue that a distinction should be made between soil moisture and vegetation drought events.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
J. Zhao, M. Chini, R. Pelich, P. Matgen, R. Hostache, S. Cao, and W. Wagner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 395–400, https://doi.org/10.5194/isprs-annals-V-1-2020-395-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-395-2020, 2020
W. Wagner, V. Freeman, S. Cao, P. Matgen, M. Chini, P. Salamon, N. McCormick, S. Martinis, B. Bauer-Marschallinger, C. Navacchi, M. Schramm, C. Reimer, and C. Briese
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 641–648, https://doi.org/10.5194/isprs-annals-V-3-2020-641-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-641-2020, 2020
Massimiliano Burlando, Djordje Romanic, Giorgio Boni, Martina Lagasio, and Antonio Parodi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-371, https://doi.org/10.5194/nhess-2019-371, 2019
Manuscript not accepted for further review
Short summary
Short summary
This paper investigates the weather conditions during the collapse of the Morandi bridge, which caused 43 fatalities. Despite a thunderstorm developed over the city at the time of collapse, weather is officially ruled out as a contributing factor for it. A meteorological analysis is relevant to support this hypothesis or possibly reconsider it. The analysis, mainly based on measurements complemented with numerical simulations, reveals that quite strong winds occurred at the time of collapse.
Barbara Glaser, Marta Antonelli, Marco Chini, Laurent Pfister, and Julian Klaus
Hydrol. Earth Syst. Sci., 22, 5987–6003, https://doi.org/10.5194/hess-22-5987-2018, https://doi.org/10.5194/hess-22-5987-2018, 2018
Short summary
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.
Gaia Piazzi, Guillaume Thirel, Lorenzo Campo, and Simone Gabellani
The Cryosphere, 12, 2287–2306, https://doi.org/10.5194/tc-12-2287-2018, https://doi.org/10.5194/tc-12-2287-2018, 2018
Short summary
Short summary
The study focuses on the development of a multivariate particle filtering data assimilation scheme into a point-scale snow model. One of the main challenging issues concerns the impoverishment of the particle sample, which is addressed by jointly perturbing meteorological data and model parameters. An additional snow density model is introduced to reduce sensitivity to the availability of snow mass-related observations. In this configuration, the system reveals a satisfying performance.
Antonio Parodi, Luca Ferraris, William Gallus, Maurizio Maugeri, Luca Molini, Franco Siccardi, and Giorgio Boni
Clim. Past, 13, 455–472, https://doi.org/10.5194/cp-13-455-2017, https://doi.org/10.5194/cp-13-455-2017, 2017
Short summary
Short summary
Initial and boundary condition data from the 20th Century Reanalysis Project in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria: the 1915 San Fruttuoso case. The proposed approach focuses on the ensemble Weather Research and Forecasting model runs that show strong convergence over the Ligurian Sea, as these runs are the ones most likely to best simulate the event.
Melissa Wood, Renaud Hostache, Jeffrey Neal, Thorsten Wagener, Laura Giustarini, Marco Chini, Giovani Corato, Patrick Matgen, and Paul Bates
Hydrol. Earth Syst. Sci., 20, 4983–4997, https://doi.org/10.5194/hess-20-4983-2016, https://doi.org/10.5194/hess-20-4983-2016, 2016
Short summary
Short summary
We propose a methodology to calibrate the bankfull channel depth and roughness parameters in a 2-D hydraulic model using an archive of medium-resolution SAR satellite-derived flood extent maps. We used an identifiability methodology to locate the parameters and suggest the SAR images which could be optimally used for model calibration. We found that SAR images acquired around the flood peak provide best calibration potential for the depth parameter, improving when SAR images are combined.
Francesco Silvestro, Nicola Rebora, Lauro Rossi, Daniele Dolia, Simone Gabellani, Flavio Pignone, Eva Trasforini, Roberto Rudari, Silvia De Angeli, and Cristiano Masciulli
Nat. Hazards Earth Syst. Sci., 16, 1737–1753, https://doi.org/10.5194/nhess-16-1737-2016, https://doi.org/10.5194/nhess-16-1737-2016, 2016
F. Silvestro, S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, and G. Boni
Hydrol. Earth Syst. Sci., 19, 1727–1751, https://doi.org/10.5194/hess-19-1727-2015, https://doi.org/10.5194/hess-19-1727-2015, 2015
A. Piscini, M. Picchiani, M. Chini, S. Corradini, L. Merucci, F. Del Frate, and S. Stramondo
Atmos. Meas. Tech., 7, 4023–4047, https://doi.org/10.5194/amt-7-4023-2014, https://doi.org/10.5194/amt-7-4023-2014, 2014
F. Silvestro, S. Gabellani, F. Delogu, R. Rudari, and G. Boni
Hydrol. Earth Syst. Sci., 17, 39–62, https://doi.org/10.5194/hess-17-39-2013, https://doi.org/10.5194/hess-17-39-2013, 2013
Cited articles
Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226, https://doi.org/10.1016/j.rse.2011.11.017, 2012.
Alexakis, D. D., Mexis, F. D. K., Vozinaki, A. E. K., Daliakopoulos, I. N., and Tsanis, I. K.: Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach, Sensors, 17, 1455, https://doi.org/10.3390/s17061455, 2017.
Attema, E. P. W. and Ulaby, F. T.: Vegetation modelled as a water cloud, Radio Sci., 13, 357–364, https://doi.org/10.1029/RS013i002p00357, 1978.
Bindlish, R. and Barros, A. P.: Parameterization of vegetation backscatter in radar-based, soil moisture estimation, Remote Sens. Environ., 76, 130–137, https://doi.org/10.1016/S0034-4257(00)00200-5, 2001.
Borga, M., Anagnostou, E. N., Blöschl, G. and Creutin, J. D.: Flash flood forecasting, warning and risk management: The HYDRATE project, Environ. Sci. Policy, 14, 834–844, https://doi.org/10.1016/j.envsci.2011.05.017, 2011.
Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., and Hasenauer, S.: Improving runoff prediction through the assimilation of the ASCAT soil moisture product, Hydrol. Earth Syst. Sci., 14, 1881–1893, https://doi.org/10.5194/hess-14-1881-2010, 2010.
Cenci, L.: Soil moisture-data assimilation for improving flash flood predictions in Mediterranean catchments. Case study: ASCAT and Sentinel 1 derived products, PhD Thesis, Scuola Universitaria Superiore IUSS Pavia (Italy), 123 pp., 2016.
Cenci, L., Laiolo, P., Gabellani, S., Campo, L., Silvestro, F., Delogu, F., Boni, G., and Rudari, R.: Assimilation of H-SAF Soil Moisture Products for Flash Flood Early Warning Systems. Case Study: Mediterranean Catchments, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 5634–5646, https://doi.org/10.1109/JSTARS.2016.2598475, 2016a.
Cenci, L., Pulvirenti, L., Boni, G., Chini, M., Matgen, P., Gabellani, S., Campo, L., Silvestro, F., and Delogu, F.: Understanding the impact of spatio-temporal resolution in soil moisture-data assimilation systems for flash flood early warning, 15th Plinius Conference on Mediterranean Risks, Giardini Naxos, Italy, 8–11 June 2016, Plinius 15-41, 2016b.
Cenci, L., Pulvirenti, L., Boni, G., Chini, M., Matgen, P., Gabellani, S., Campo, L., Silvestro, F., Versace, C., Campanella, P., and Candela, L.: Satellite soil moisture assimilation: preliminary assessment of the Sentinel 1 potentialities, in: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016, 3098–3101, https://doi.org/10.1109/IGARSS.2016.7729801, 2016c.
Cenci, L., Pulvirenti, L., Boni, G., Chini, M., Matgen, P., Gabellani, S., Squicciarino, G., and Pierdicca, N.: Setting up a Sentinel 1 based soil moisture – data assimilation system for flash flood risk mitigation, EGU General Assembly, Vienna, Austria, 23–28 April 2017, EGU2017-8096, 2017a.
Cenci, L., Pulvirenti, L., Boni, G., Chini, M., Matgen, P. , Gabellani, S., Squicciarino, G., and Pierdicca, N.: Exploiting Sentinel 1 data for improving (flash) flood modelling via data assimilation techniques, in: Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, Texas, USA, 23–28 July 2017, 4939-4942, 2017b.
Chen, F., Crow, W. T., Starks, P. J., and Moriasi, D. N.: Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture, Adv. Water Resour., 34, 526–536, https://doi.org/10.1016/j.advwatres.2011.01.011, 2011.
Drusch, M.: Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture, Geophys. Res. Lett., 32, L15403, https://doi.org/10.1029/2005GL023623, 2005.
Jackson, T. J.: Profile soil moisture from space measurements, J. Irr. Drain. Div.-ASCE, 106, 81–92, 1980.
Kim, S. B., Tsang, L., Johnson, J. T., Huang, S., Van Zyl, J. J., and Njoku, E. G.: Soil moisture retrieval using time-series radar observations over bare surfaces, IEEE T. Geosci. Remote Sens., 50, 1853–1863, https://doi.org/10.1109/TGRS.2011.2169454, 2012.
Laiolo, P., Gabellani, S., Campo, L., Cenci, L., Silvestro, F., Delogu, F., Boni, G., Rudari, R., Puca, S. ,and Pisani, A. R.: Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle, in: Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015, 1308–1311, https://doi.org/10.1109/IGARSS.2015.7326015, 2015a.
Laiolo, P., Gabellani, S., Campo, L., Silvestro, F., Delogu, F., Rudari, R., Pulvirenti, L., Boni, G., Fascetti, F., Pierdicca, N., Crapolicchio, R., Hasenauer, S., and Puca, S.: Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model, Int. J. Appl. Earth Obs. Geoinf., 48, 131–145, https://doi.org/10.1016/j.jag.2015.06.002, 2015b.
Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J. M., Dunbar, R. S., Kim, S. B., Das, N. N., Cosh, M., Walker, J. P., and Wagner, W.: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates, Geophys. Res. Lett., 44, 6145–6153, https://doi.org/10.1002/2017GL073904, 2017.
Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012.
Massari, C., Brocca, L., Tarpanelli, A., and Moramarco, T.: Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling: A Complex Recipe?, Remote Sens., 7, 11403–11433, https://doi.org/10.3390/rs70911403, 2015a.
Massari, C., Brocca, L., Ciabatta, L., Moramarco, T., Gabellani, S., Albergel, C., De Rosnay, P., Puca, S., and Wagner, W.: The Use of H-SAF Soil Moisture Products for Operational Hydrology: Flood Modelling over Italy, Hydrology, 2, 2–22, https://doi.org/10.3390/hydrology2010002, 2015b.
Matgen, P., Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels, V. R. N., Wagner, W., and Savenije, H.: Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application, Adv. Water Resour., 44, 49–65, https://doi.org/10.1016/j.advwatres.2012.03.022, 2012a.
Matgen, P., Heitz, S., Hasenauer, S., Hissler, C., Brocca, L., Hoffmann, L., Wagner, W., and Savenije, H. H. G.: On the potential of MetOp ASCAT-derived soil wetness indices as a new aperture for hydrological monitoring and prediction: a field evaluation over Luxembourg, Hydrol. Process., 26, 2346–2359, https://doi.org/10.1002/hyp.8316, 2012b.
Merheb, M., Moussa, R., Abdallah, C., Colin, F., Perrin, C., and Baghdadi, N.: Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis, Hydrol. Sci. J., 61, 2520–2539, https://doi.org/10.1080/02626667.2016.1140174, 2016.
Nash, J. E. and Sutcliffe, J. V: River Flow Forecasting Through Conceptual Models Part I-a Discussion of Principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Oh, Y.: Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces, IEEE T. Geosci. Remote Sens., 42, 596–601, https://doi.org/10.1109/TGRS.2003.821065, 2004.
Paloscia, S., Santi, E., Fontanelli, G., Montomoli, F., Brogioni, M., MacElloni, G., Pampaloni, P., and Pettinato, S.: The sensitivity of cosmo-skymed backscatter to agricultural crop type and vegetation parameters, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 2856–2868, https://doi.org/10.1109/JSTARS.2014.2345475, 2014.
Pierdicca, N., Pulvirenti, L., Bignami, C., and Ticconi, F.: Monitoring soil moisture in an agricultural test site using SAR data: Design and test of a pre-operational procedure, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 1199–1210, https://doi.org/10.1109/JSTARS.2012.2237162, 2013.
Pulvirenti, L., Squicciarino, G., Cenci, L., Boni, G., Pierdicca, N., Chini, M., Versace, C., and Campanella, P.: A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data, Environ. Modell. Softw., submitted, 2017.
Reichle, R. H. and Koster, R. D.: Bias reduction in short records of satellite soil moisture, Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938, 2004.
Sentinel-ESA: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar, last asccess: 21 June 2017.
Silvestro, F., Gabellani, S., Delogu, F., Rudari, R., and Boni, G.: Exploiting remote sensing land surface temperature in distributed hydrological modelling: the example of the Continuum model, Hydrol. Earth Syst. Sci., 17, 39–62, https://doi.org/10.5194/hess-17-39-2013, 2013.
Thornes, J., Lopez-Bermudez, F., and Woodward, J.: The Physical Geography of the Mediterranean, edited by: Woodward, J., p. 709, Oxford Regional Environments, 2009.
Vachaud, G., De Silans Passerat, A., Balabanis, P., and Vauclin, M.: Temporal stability of spatially measured soil water probability density function, Soil Sci. Soc. Am. J., 49, 822–828, https://doi.org/10.2136/sssaj1985.03615995004900040006x, 1985.
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture from ERS Scatterometer and soil data, Remote Sens. Environ., 70, 191–207, https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.
Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.-C., Bizzarri, B., Wigneron, J.-P., and Kerr, Y.: Operational readiness of microwave remote sensing of soil moisture for hydrologic applications, Nord. Hydrol., 38, 1, https://doi.org/10.2166/nh.2007.029, 2007.
Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., De Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., Blöschl, G., Eitzinger, J., Steinnocher, K., Zeil, P., and Rubel, F.: The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications, Meteorol. Zeitschrift, 22, 5–33, https://doi.org/10.1127/0941-2948/2013/0399, 2013.
Walker, J. P. and Houser, P. R.: Hydrologic Data Assimilation, in: Advances in water science methodologies, edited by: Aswathanarayana, U., CRC Press, Taylor & Francis Group, 2005.
Short summary
This research aims at improving hydrological modelling skills of flash flood prediction by exploiting earth observation data. To this aim, high spatial/moderate temporal resolution soil moisture maps, derived from Sentinel 1 acquisitions, were used in a data assimilation framework. Findings revealed the potential of Sentinel 1-based soil moisture data assimilation for flash flood risk reduction and improved our understanding of the capabilities of the aforementioned satellite-derived product.
This research aims at improving hydrological modelling skills of flash flood prediction by...