Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling
Laboratory of Hydrology and Aquatic Systems Analysis, Department of
Civil Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece
Lampros Vasiliades
Laboratory of Hydrology and Aquatic Systems Analysis, Department of
Civil Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece
Athanasios Loukas
Laboratory of Hydrology and Aquatic Systems Analysis, Department of
Civil Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece
Giuseppe T. Aronica
Department of Civil Engineering, Computer Science, Building,
Environmental Science, and Applied Mathematics, University of Messina,
Contrada Di Dio, 98166 Villaggio S. Agata, Messina, Italy
Related authors
No articles found.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Giuseppina Brigandì, Giuseppe Tito Aronica, Brunella Bonaccorso, Roberto Gueli, and Giuseppe Basile
Adv. Geosci., 44, 79–88, https://doi.org/10.5194/adgeo-44-79-2017, https://doi.org/10.5194/adgeo-44-79-2017, 2017
Short summary
Short summary
The paper presents the flood and landslide early warning system HEWS developed by the University of Messina for the
Integrated Multi-Risk Decentralised Functional Centreof Sicily (Italy). HEWS implements a methodology based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF) to issue alert bulletins both for floods and landslide. The software Delft-FEWS has been adopted as operation platform to support the implementation of HEWS.
Daniela Molinari, Karin De Bruijn, Jessica Castillo, Giuseppe T. Aronica, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-303, https://doi.org/10.5194/nhess-2017-303, 2017
Preprint retracted
Short summary
Short summary
Flood risk estimates are characterised by significant uncertainties; accordingly, evaluating the reliability of such estimates (i.e. validating flood risk models) is crucial. Here, we discuss the state of art of flood risk models validation with the aim of identifying policy and research recommendations towards promoting more common practice of validation. The main conclusions from this review can be summarised as the need of higher quality data to perform validation and of benchmark solutions.
Brunella Bonaccorso, Giuseppina Brigandì, and Giuseppe Tito Aronica
Adv. Geosci., 44, 15–22, https://doi.org/10.5194/adgeo-44-15-2017, https://doi.org/10.5194/adgeo-44-15-2017, 2017
Short summary
Short summary
A Monte Carlo approach for deriving flood frequency curves in ungauged basins in Sicily region (Italy) is proposed. The procedure consists of: (i) a regional frequency analysis of extreme rainfall series, combined with Huff curves-based synthetic hyetographs, for design storms and (ii) a rainfall-runoff model, based on the Time-Area technique, to generate synthetic hydrographs. Validation of the procedure is carried out on four gauged river basins in Sicily (Italy) with promising results.
Giuliano Di Baldassarre, Smeralda Saccà, Giuseppe Tito Aronica, Salvatore Grimaldi, Alessio Ciullo, and Massimiliano Crisci
Adv. Geosci., 44, 9–13, https://doi.org/10.5194/adgeo-44-9-2017, https://doi.org/10.5194/adgeo-44-9-2017, 2017
Short summary
Short summary
Throughout history, the city of Rome has experienced numerous flooding events from the Tiber river. Ancient Rome mostly developed on the hills, while the Tiber’s floodplain was mainly used for agricultural purposes. Instead, many people live nowadays in modern districts in the Tiber’s floodplain, often unaware of their exposure to potentially flooding. This research work aims to explore the dynamics of changing flood risk between these two opposite pictures of ancient and contemporary Rome.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriaučiūnienė, A. Loukas, M. Osuch, and I. Yücel
Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, https://doi.org/10.5194/hess-19-1827-2015, 2015
A. Candela, G. Brigandì, and G. T. Aronica
Nat. Hazards Earth Syst. Sci., 14, 1819–1833, https://doi.org/10.5194/nhess-14-1819-2014, https://doi.org/10.5194/nhess-14-1819-2014, 2014
A. Loukas and L. Vasiliades
Nat. Hazards Earth Syst. Sci., 14, 1641–1661, https://doi.org/10.5194/nhess-14-1641-2014, https://doi.org/10.5194/nhess-14-1641-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
D. Molinari, S. Menoni, G. T. Aronica, F. Ballio, N. Berni, C. Pandolfo, M. Stelluti, and G. Minucci
Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, https://doi.org/10.5194/nhess-14-901-2014, 2014
Cited articles
Aggett, G. R. and Wilson, J. P.: Creating and coupling a high-resolution DTM with a 1-D hydraulic model in GIS for scenario-based assessment of avulsion hazard in gravel-bed river, Geomorphology, 113, 21–34, 2009.
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, 2014.
Alfonso, L., Mukolwe, M. M., and Di Baldassarre, G.: Probabilistic Flood Maps to support decision-making: Mapping the Value of Information, Water Resour. Res., 52, 1026–1043, https://doi.org/10.1002/2015WR017378, 2016.
Apel, H., Thieken, A. H., Merz, B., and Blöschl, G.: Flood risk assessment and associated uncertainty, Nat. Hazards Earth Syst. Sci., 4, 295–308, https://doi.org/10.5194/nhess-4-295-2004, 2004.
Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, https://doi.org/10.1007/s11069-008-9277-8, 2009.
Aronica, G. T., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Aronica, G. T., Brigandí, G., and Morey, N.: Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: the case of the Giampilieri catchment, Nat. Hazards Earth Syst. Sci., 12, 1295–1309, https://doi.org/10.5194/nhess-12-1295-2012, 2012.
Bates, P. D., Horritt, M. S., Aronica, G., and Beven, K.: Bayesian updating of flood inundation likelihoods conditioned on flood extent data, Hydrol. Process., 18, 3347–3370, 2004.
Bates, P. D., Wilson, M. D., Horritt, M. S., Mason, D. C., Holden, N., and Currie, A.: Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling, J. Hydrol., 328, 306–318, 2006.
Brunner, G. W.: HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0, US Army Corps of Engineers – Hydrologic Engineering Center, 2016a.
Brunner, G. W.: HEC-RAS River Analysis System: User's Manual, Version 5.0, US Army Corps of Engineers – Hydrologic Engineering Center, 2016b.
Bunte, K., Abt, S. R., Potyondy, J. P., and Swingle, K. W.: Comparison of three pebble count protocols (EMAP, PIBO, and SFT) in two mountain gravel-bed streams, J. Am. Water Resour. Assoc., 45, 1209–1227, https://doi.org/10.1111/j.1752-1688.2009.00355.x, 2009.
Chang, M.: Forest Hydrology: An Introduction to Water and Forests, 1st Edn., CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA, 2002.
Chow, V. T.: Open-Channel Hydraulics, McGraw-Hill, New York, 1959.
Clark, C. O.: Storage and the unit hydrograph, Trans. ASCE, 110, 1419–1446, 1945.
Cook, A. and Merwade, V.: Effect of topographic data, geometric configurations and modeling approach on flood inundation mapping, J. Hydrol., 377, 131–142, 2009.
Coon, W. F.: Estimation of roughness coefficients for natural stream channels with vegetated banks, Geological Survey (US), New York (State), Dept. of Transportation, 1998.
Costabile, P. and Macchione, F.: Enhancing river model set-up for 2-D dynamic flood modelling, Environ.l Modell. Softw., 67, 89–107, 2015.
Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., and Beven, K. J.: Floodplain mapping: a critical discussion on deterministic and probabilistic approaches, Hydrol. Sci. J., 55, 364–376, 2010.
Dimitriadis, P., Tegos, A., Oikonomou, A., Pagana, V., Koukouvinos, A., Mamassis, N., Koutsoyiannis, D., and Efstratiadis, A.: Comparative evaluation of 1-D and quasi-2-D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping, J. Hydrol., 534, 478–492, 2016.
Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., and Brath, A.: Probabilistic flood hazard mapping: effects of uncertain boundary conditions, Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, 2013.
Dottori, F., Di Baldassarre, G., and Todini, E.: Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modelling, Water Resour. Res., 49, 6079–6085, https://doi.org/10.1002/wrcr.20406, 2013.
Goodell, C.: Breaking the HEC-RAS code: A user's guide to automating HEC-RAS, h2ls, Portland, USA, 2014.
Gruntfest, E. and Handmer, J.: Coping with Flash Floods, NATO Science Series, 77, 2001.
Gwinn, W. R. and Ree W. O.: Maintenance effects on the hydraulic properties of a vegetation lined channel, ASAE Trans., 23, 636–42, https://doi.org/10.13031/2013.34637, 1980.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriauciuniene, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Ho, C. W. and Huang, H. P.: Manning's roughness coefficient of mountainous streams in Taiwan, in: Channel flow resistance: centennial of Manning's formula, edited by: Yen, B. C., Littleton: Water Resources Publications, 299–308, 1992.
Horritt, M. S.: A methodology for the validation of uncertain flood inundation models, J. Hydrol., 326, 153–165, 2006.
Horritt, M. S. and Bates, P. D.: Predicting floodplain inundation: raster-based modelling versus the finite element approach, Hydrol. Process., 15, 825–842, https://doi.org/10.1002/hyp.188, 2001.
Horritt, M. S. and Bates, P. D.: Evaluation of 1-D and 2-D numerical models for predicting river flood inundation, J. Hydrol., 268, 87–99, 2002.
Horritt, M. S., Di Baldassarre, G., Bates, P. D., and Brath, A.: Comparing the performance of 2-D finite element and finite volume models of floodplain inundation using airborne SAR imagery, Hydrol. Process., 21, 2745–2759, 2007.
Hyndman, R. J. and Koehler, A. B.: Another look at measures of forecast accuracy, Int. J. Forecasting, 22, 679–688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006.
Jarrett, R. D.: Determination of roughness coefficients for streams in Colorado. Water Res. Investigations Report 85–4004, Geological Survey (US), Lakewood, Colorado, USA, 1985.
Javan, M., McKeogh E. J., and Kiely, G. K.: Field evaluation of Manning's n in gravel rivers, in: Channel flow resistance: centennial of Manning's formula, edited by: Yen, B. C., Littleton: Water Resources Publications, 318–327, 1992.
Kiczko, A., Romanowicz, R. J., Osuch, M., and Karamuz, E.: Maximising the usefulness of flood risk assessment for the River Vistula in Warsaw, Nat. Hazards Earth Syst. Sci., 13, 3443–3455, https://doi.org/10.5194/nhess-13-3443-2013, 2013.
Kourgialas, N. N. and Karatzas, G. P.: A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices, Nat. Hazards Earth Syst. Sci., 14, 625–634, https://doi.org/10.5194/nhess-14-625-2014, 2014.
Liu, Q., Qin, Y., Zhang, Y., and Li, Z.: A coupled 1D-2D hydrodynamic model for flood simulation in flood detention basin, Nat. Hazards, 75, 1303–1325, https://doi.org/10.1007/s11069-014-1373-3, 2015.
Loukas, A. and Quick, M. C.: Physically-based estimation of lag time for forested mountainous watersheds, Hydrolog. Sci. J., 41, 1–19, https://doi.org/10.1080/02626669609491475, 1996.
Marcus, W. A., Roberts, K., Harvey, L., and Tackman, G.: An evaluation of methods for estimating Manning's n in small mountain streams, Mt. Res. Dev., 12, 227–239, 1992.
Marzocchi, R., Federici, B., Cannata, M., Cosso, T., and Syriou, A.: Comparison of one-dimensional and two-dimensional GRASS-GIS models for flood mapping, Appl. Geomatics, 6, 245–254, https://doi.org/10.1007/s12518-014-0140-1, 2014.
McCuen, R. H.: Hydrologic Analysis and Design, 3rd Edn., Pearson, 2005.
McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239–245, 1979.
McKay, S. K. and Fischenich, J. C.: Robust prediction of hydraulic roughness. Vicksburg, Miss: US Army Engineer Research and Development Center, 2011.
Merz, B. and Thieken, A. H.: Separating natural and epistemic uncertainty in flood frequency analysis, J. Hydrol., 309, 114–132, https://doi.org/10.1016/j.jhydrol.2004.11.015, 2005.
Md Ali, A., Solomatine, D. P., and Di Baldassarre, G.: Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods, Hydrol. Earth Syst. Sci., 19, 631–643, https://doi.org/10.5194/hess-19-631-2015, 2015.
Millard, S. P.: EnvStats: An R Package for Environmental Statistics, Springer, New York, 2013.
Noman, N. S., Nelson, E. J., and Zundel, A. K.: Review of automated floodplain delineation from digital terrain models, J. Water Res. Pl.-ASCE, 127, 394–402, 2001.
Noman, N. S., Nelson, E. J., and Zundel, A. K.: Improved process for floodplain delineation from digital terrain models, J. Water Res. Pl.-ASCE, 129, 427–436, 2003.
Papaioannou, G., Loukas, A., and Georgiadis, Ch.: The effect of riverine terrain spatial resolution on flood modeling and mapping, Proc. SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013), 87951H, https://doi.org/10.1117/12.2028218, 2013.
Papaioannou, G., Loukas, A., Vasiliades, L., and Aronica G. T.: Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach, Nat. Hazards, 83, 117–132, https://doi.org/10.1007/s11069-016-2382-1, 2016.
Papaioannou, G., Vasiliades, L., and Loukas, A.: Multi-criteria analysis framework for potential flood prone areas mapping, Water Resour. Manag., 29, 399–418, https://doi.org/10.1007/s11269-014-0817-6, 2015.
Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S.: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, J. Hydrol., 302, 46–69, https://doi.org/10.1016/j.jhydrol.2004.06.036, 2005.
Podhoranyi, M. and Fedorcak, D.: Inaccuracy introduced by LiDAR-generated cross sections and its impact on 1-D hydrodynamic simulations, Environ. Earth Sci., 73, 1–11, https://doi.org/10.1007/s12665-014-3390-7, 2015.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/, last access: 2 March 2017.
Romanowicz, R. J. and Kiczko, A.: An event simulation approach to the assessment of flood level frequencies: risk maps for the Warsaw reach of the River Vistula, Hydrol. Process., 30, 2451–2462, https://doi.org/10.1002/hyp.10857, 2016.
Romero, M., Revollo, N., and Mollina, J.: Flow resistance in steep mountain rivers in Bolivia, J. Hydrodyn., 22, 702–707, https://doi.org/10.1016/S1001-6058(10)60018-2, 2010.
Sampson, C. C., Fewtrell. J. T., Duncan. A., Shaad. K., Horritt, S. M., and Bates, D. P.: Use of terrestrial laser scanning data to drive decimetric resolution urban inundation models, Adv. Water Resour., 41, 1–17, https://doi.org/10.1016/j.advwatres.2012.02.010, 2012.
Sarhadi, A., Soltani, S., and Modarres, R.: Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis, J. Hydrol., 458–459, 68–86, https://doi.org/10.1016/j.jhydrol.2012.06.039, 2012.
Shen, D., Wang, J., Cheng, X., Rui, Y., and Ye, S.: Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling, Hydrol. Earth Syst. Sci., 19, 3605–3616, https://doi.org/10.5194/hess-19-3605-2015, 2015.
Teng, J., Vaze, J., Dutta, D., and Marvanek, S.: Rapid inundation modelling in large floodplains using LiDAR DEM, Water Resour. Manag., 29, 2619–2636, https://doi.org/10.1007/s11269-015-0960-8, 2015.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., and Kim, S.: Flood inundation modelling: A review of methods, recent advances and uncertainty analysis, Environ. Modell. Softw., 90, 201–216, https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
Tsakiris, G.: Flood risk assessment: concepts, modelling, applications, Nat. Hazards Earth Syst. Sci., 14, 1361–1369, https://doi.org/10.5194/nhess-14-1361-2014, 2014.
Tsakiris, G. and Bellos, V.: A numerical model for two-dimensional flood routing in complex terrains, Water Resour. Manage., 28, 1277–1291, https://doi.org/10.1007/s11269-014-0540-3, 2014.
Tsubaki, R. and Fujita, I.: Unstructured grid generation using LiDAR data for urban flood inundation modelling, Hydrol. Process., 24, 1404–1420, https://doi.org/10.1002/hyp.7608, 2010.
Ugarte, A. S. and Madrid-Aris, M.: Roughness Coefficient in mountain river, in: Hydraulic Engineering, edited by: Cotroneo, G. V. and Rumer, R., 94, New York: American Society of Civil Engineers, 652–656, 1994.
Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, 4th Edn., Springer, New York, 2002.
Ward, A. D., Trimble, S. W., Burckhard, S. R., and Lyon, J. G.: Environmental Hydrology, 3rd Edn., CRC Press, 2016.
Short summary
Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling. The results of this study show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.
Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient...