Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures
Tito Maldonado
CORRESPONDING AUTHOR
Centre for Natural Disaster Science, Uppsala University, Villav.
16, 752 36, Uppsala, Sweden
Department of Earth Sciences, Uppsala
University, Villav. 16 752 36, Uppsala, Sweden
Center for Geophysical Research, University of Costa
Rica, San Pedro de Montes de Oca, 11501-2060 San Jose, Costa Rica
Anna Rutgersson
Department of Earth Sciences, Uppsala
University, Villav. 16 752 36, Uppsala, Sweden
Eric Alfaro
School of Physics,
University of Costa Rica, San Pedro de Montes de Oca, 11501-2060 San Jose,
Costa Rica
Center for Geophysical Research, University of Costa
Rica, San Pedro de Montes de Oca, 11501-2060 San Jose, Costa Rica
Centre for Research in Marine Sciences and Limnology, University of
Costa Rica, San Pedro de Montes de Oca, 11501-2060 San Jose,
Costa Rica
Jorge Amador
School of Physics,
University of Costa Rica, San Pedro de Montes de Oca, 11501-2060 San Jose,
Costa Rica
Center for Geophysical Research, University of Costa
Rica, San Pedro de Montes de Oca, 11501-2060 San Jose, Costa Rica
Björn Claremar
Department of Earth Sciences, Uppsala
University, Villav. 16 752 36, Uppsala, Sweden
Related authors
No articles found.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Ferran Lopez-Marti, Mireia Ginesta, Davide Faranda, Anna Rutgersson, Pascal Yiou, Lichuan Wu, and Gabriele Messori
EGUsphere, https://doi.org/10.5194/egusphere-2024-1711, https://doi.org/10.5194/egusphere-2024-1711, 2024
Short summary
Short summary
Explosive Cyclones and Atmospheric Rivers are two main drivers of extreme weather in Europe. In this study, we investigate their joint changes in future climates over the North Atlantic. Our results show that both the concurrence of these events and the intensity of atmospheric rivers increase by the end of the century across different future scenarios. Furthermore, explosive cyclones associated with atmospheric rivers are longer-lasting and deeper than those without atmospheric rivers.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Ocean Sci., 20, 21–30, https://doi.org/10.5194/os-20-21-2024, https://doi.org/10.5194/os-20-21-2024, 2024
Short summary
Short summary
Coastal floods occur due to extreme sea levels (ESLs) which are difficult to predict because of their rarity. Long records of accurate sea levels at the local scale increase ESL predictability. Here, we apply a machine learning technique to extend sea level observation data in the past based on a neighbouring tide gauge. We compared the results with a linear model. We conclude that both models give reasonable results with a better accuracy towards the extremes for the machine learning model.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Matthias Gröger, Christian Dieterich, Jari Haapala, Ha Thi Minh Ho-Hagemann, Stefan Hagemann, Jaromir Jakacki, Wilhelm May, H. E. Markus Meier, Paul A. Miller, Anna Rutgersson, and Lichuan Wu
Earth Syst. Dynam., 12, 939–973, https://doi.org/10.5194/esd-12-939-2021, https://doi.org/10.5194/esd-12-939-2021, 2021
Short summary
Short summary
Regional climate studies are typically pursued by single Earth system component models (e.g., ocean models and atmosphere models). These models are driven by prescribed data which hamper the simulation of feedbacks between Earth system components. To overcome this, models were developed that interactively couple model components and allow an adequate simulation of Earth system interactions important for climate. This article reviews recent developments of such models for the Baltic Sea region.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Taru Olsson, Anna Luomaranta, Kirsti Jylhä, Julia Jeworrek, Tuuli Perttula, Christian Dieterich, Lichuan Wu, Anna Rutgersson, and Antti Mäkelä
Adv. Sci. Res., 17, 87–104, https://doi.org/10.5194/asr-17-87-2020, https://doi.org/10.5194/asr-17-87-2020, 2020
Short summary
Short summary
Statistics of the frequency and intensity of snow bands affecting the Finnish coast during years 2000–2010 was conducted. A set of criteria for meteorological variables favoring the formation of the snow bands were applied to regional climate model (RCA4) data. We found on average three days per year with favorable conditions for coastal sea-effect snowfall. The heaviest convective snowfall events were detected most frequently over the southern coastline.
Gaëlle Parard, Anna Rutgersson, Sindu Raj Parampil, and Anastase Alexandre Charantonis
Earth Syst. Dynam., 8, 1093–1106, https://doi.org/10.5194/esd-8-1093-2017, https://doi.org/10.5194/esd-8-1093-2017, 2017
Short summary
Short summary
Coastal environments and shelf sea represent 7.6 % of the total oceanic surface area. They are, however, biogeochemically more dynamic and probably more vulnerable to climate change than the open ocean. Whatever the responses of the open ocean to climate change, they will propagate to the coastal ocean. We used the self-organizing multiple linear output (SOMLO) method to estimate the ocean surface pCO2 in the Baltic Sea from remotely sensed measurements and we estimated the air–sea CO2 flux.
Björn Claremar, Karin Haglund, and Anna Rutgersson
Earth Syst. Dynam., 8, 901–919, https://doi.org/10.5194/esd-8-901-2017, https://doi.org/10.5194/esd-8-901-2017, 2017
Short summary
Short summary
Shipping is the most cost-effective option for the global transport of goods, and over 90 % of world trade is carried by sea. The shipping sector, however, contributes to emissions of pollutants into the air and water. Estimates of deposition and near-surface concentrations of sulfur, nitrogen, and particulate matter originating from shipping in the Baltic Sea region have been developed for present conditions concerning traffic intensity and fuel as well as for future scenarios until 2050.
Julia Jeworrek, Lichuan Wu, Christian Dieterich, and Anna Rutgersson
Earth Syst. Dynam., 8, 163–175, https://doi.org/10.5194/esd-8-163-2017, https://doi.org/10.5194/esd-8-163-2017, 2017
Short summary
Short summary
Convective snow bands develop in response to a cold air outbreak from the continent over an open water surface. In the Baltic Sea region these cause intense snowfall and can cause serious problems for traffic, infrastructure and other important establishments of society. The conditions for these events to occur were characterized and the potential of using a regional modelling system was evaluated. The modelling system was used to develop statistics of these events to occur in time and space.
Ana María Durán-Quesada, Luis Gimeno, and Jorge Amador
Earth Syst. Dynam., 8, 147–161, https://doi.org/10.5194/esd-8-147-2017, https://doi.org/10.5194/esd-8-147-2017, 2017
Short summary
Short summary
This work aims to leverage the understanding of precipitation distribution with a long-term analysis of moisture transport from oceanic and continental sources and its relevance for regional precipitation features, variability and trends. Combining reanalysis, model output, in situ observations and satellite products we provide a robust survey that is useful for, for example, modelling, water resource management, flood and drought monitoring, rain-linked disease spread and ecosystem studies.
Carmen P. Vega, Veijo A. Pohjola, Emilie Beaudon, Björn Claremar, Ward J. J. van Pelt, Rickard Pettersson, Elisabeth Isaksson, Tõnu Martma, Margit Schwikowski, and Carl E. Bøggild
The Cryosphere, 10, 961–976, https://doi.org/10.5194/tc-10-961-2016, https://doi.org/10.5194/tc-10-961-2016, 2016
Short summary
Short summary
To quantify post-depositional relocation of major ions by meltwater in snow and firn at Lomonosovfonna, Svalbard, consecutive ice cores drilled at this site were used to construct a synthetic core. The relocation length of most of the ions was on the order of 1 m between 2007 and 2010. Considering the ionic relocation lengths and annual melt percentages, we estimate that the atmospheric ionic signal remains preserved in recently drilled Lomonosovfonna ice cores at an annual or bi-annual resolution.
G. Parard, A. A. Charantonis, and A. Rutgerson
Biogeosciences, 12, 3369–3384, https://doi.org/10.5194/bg-12-3369-2015, https://doi.org/10.5194/bg-12-3369-2015, 2015
Short summary
Short summary
In this paper, we used combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and
mixed-layer depth. The outputs of this research have a horizontal resolution of 4km and cover the 1998–2011 period. These outputs give a monthly map of the Baltic Sea.
E. Podgrajsek, E. Sahlée, D. Bastviken, J. Holst, A. Lindroth, L. Tranvik, and A. Rutgersson
Biogeosciences, 11, 4225–4233, https://doi.org/10.5194/bg-11-4225-2014, https://doi.org/10.5194/bg-11-4225-2014, 2014
J. A. Amador and E. J. Alfaro
Adv. Geosci., 35, 157–167, https://doi.org/10.5194/adgeo-35-157-2014, https://doi.org/10.5194/adgeo-35-157-2014, 2014
Cited articles
Alfaro, E.: Some Characteristics of the Annual Precipitation Cycle in Central America and their Relationships with its Surrounding Tropical Oceans, Tópicos Meteorológicos y Oceanográficos, 9, 1–13, https://www.imn.ac.cr/documents/10179/20907/T%C3%B3picos+Meteorol%C3%B3gicos+y+Oceanogr%C3%A1ficos+-+2000-2 , 2002.
Alfaro, E.: Uso del análisis de correlación canónica para la predicción de la precipitación pluvial en Centroamérica, Ingeniería y Competitividad, 9, 33–48, http://bibliotecadigital.univalle.edu.co/xmlui/handle/10893/1622, 2007.
Alfaro, E.: Caracterización del “veranillo” en dos cuencas de la vertiente del Pacífico de Costa Rica, América Central (Characterization of the Mid Summer Drought in two Pacific slope river basins of Costa Rica, Central America), International Journal of Tropical Biology, 62, 1–15, available at: https://www.academia.edu/9493294 (last access: 22 April 2016), 2014.
Alfaro, E. and Soley, J.: Descripción de dos métodos de rellenado de datos ausentes en series de tiempo meteorológicas, Revista de Matemáticas: Teoría y Aplicaciones, 16, 59–74, available at: http://dx.doi.org/10.15517/rmta.v16i1.1419 (last access 22 April 2016), 2009.
Amador, J. A.: A Climatic Feature of the Tropical Americas: The Trade Wind Easterly Jet, Tópicos Meteorológicos y Oceanográficos., 5, 91–102, available at: https://www.imn.ac.cr/documents/10179/20907/T%C3%B3picos+Meteorol%C3%B3gicos+y+Oceanogr%C3%A1ficos+-+1998-2 (last access: 22 April 2016), 1998.
Amador, J. A.: The Intra-Americas Sea Low-level Jet Overview and Future Research, Ann. NY Acad. Sci., 1146, 153–188, https://doi.org/10.1196/annals.1446.012, 2008.
Amador, J. A., Alfaro, E. J., Lizano, O. G., and Magaña, V. O.: Atmospheric forcing of the eastern tropical Pacific: A review, Prog. Oceanogr., 69, 101–142, https://doi.org/10.1016/j.pocean.2006.03.007, 2006.
Ashby, S. A., Taylor, M. A., and Chen, A. A.: Statistical models for predicting rainfall in the Caribbean, Theor. Appl. Climatol., 82, 65–80, https://doi.org/10.1007/s00704-004-0118-8, 2005.
Chen, A. A. and Taylor, M. A.: Investigating the link between early season Caribbean rainfall and the El Niño+ 1 year, Int. J. Climatol., 22, 87–106, https://doi.org/10.1002/joc.711, 2002.
Chinchilla-Ramírez, G.: Resumen Meteorológico Julio 2014, Boletín Meteorológico Mensual, https://www.imn.ac.cr/documents/10179/14639/JULIO (last access: 22 April 2016), 2014.
Enfield, D. B. and Alfaro, E. J.: The Dependence of Caribbean Rainfall on the Interaction of the Tropical Atlantic and Pacific Oceans, J. Climate, 12, 2093–2103, https://doi.org/10.1175/1520-0442(1999)012<2093:TDOCRO>2.0.CO;2, 1999.
Fallas-López, B. and Alfaro, E. J.: Uso de herramientas estadísticas para la predicción estacional del campo de precipitación en América Central como apoyo a los Foros Climáticos Regionales. 1: Análisis de tablas de contingencia, Revista de Climatología, 12, 61–79, http://webs.ono.com/reclim7/reclim12e.pdf, 2012a.
Fallas-López, B. and Alfaro, E. J.: Uso de herramientas estadísticas para la predicción estacional del campo de precipitación en América Central como apoyo a los Foros Climáticos Regionales, 2: Análisis de Correlación Canónica, Revista de Climatología, 12, 93–105, http://webs.ono.com/reclim8/reclim12g.pdf, 2012b.
Gershunov, A. and Barnett, T.: ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results, J. Climate, 11, 1575–1586, https://doi.org/10.1175/1520-0442(1998)011<1575:EIOIER>2.0.CO;2, 1998.
Gershunov, A. and Cayan, D. R.: Heavy Daily Precipitation Frequency over the Contiguous United States: Sources of Climatic Variability and Seasonal Predictability, J. Climate, 16, 2752–2765, https://doi.org/10.1175/1520-0442(2003)016<2752:HDPFOT>2.0.CO;2, 2003.
Hernández, K. and Fernández, W.: Estudio de la evaporación para el cálculo del inicio y la conclusión de la época seca y lluviosa en Costa Rica, Tópicos Meteorológicos y Oceanográficos, 14, 18–26, 2015.
Herrera, E., Magaña, V., and Caetano, E.: Air-sea interactions and dynamical processes associated with the midsummer drought, Int. J. Climatol., 35, 1569–1578, https://doi.org/10.1002/joc.4077, 2015.
Hidalgo, H. G., Durán-Quesada, A. M., Amador, J. A., and Alfaro, E. J.: The Caribbean Low-Level Jet, the Inter-Tropical Convergence Zone and Precipitation Patterns in the Intra-Americas Sea: A Proposed Dynamical Mechanism, Geogr. Ann. A, 97, 41–59, https://doi.org/10.1111/geoa.12085, 2015.
International Research Institute for Climate and Society IRI, Earth Institute, Columbia University: NCEP NINO34 from Indices nino, New York, USA, Dataset: http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.NCEP/.NINO34/, 2015.
Japan Agency for Marine-Earth Science and Technology (JAMSTEC): Modoki ENSO, Japan, Dataset: http://www.jamstec.go.jp/frcgc/research/d1/iod/enmodoki_home_s.html.en, 2016.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Karnauskas, K. B., Seager, R., Giannini, A., and Busalacchi, A. J.: A simple mechanism for the climatological midsummer drought along the Pacific coast of Central America, Atmósfera, 26, 261–281, https://doi.org/10.1016/S0187-6236(13)71075-0, 2013.
Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation, B. Am. Meteorol. Soc., 82, 247–267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2, 2001.
Magaña, V., Amador, J. A., and Medina, S.: The Midsummer Drought over Mexico and Central America, J. Climate, 12, 1577–1588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2, 1999.
Maldonado, T. and Alfaro, E.: Predicción estacional para ASO de eventos extremos y días con precipitación sobre las vertientes Pacífico y Caribe de América Central, utilizando análisis de correlación canónica, InterSedes, 12, 78–108, http://www.intersedes.ucr.ac.cr/ojs/index.php/intersedes/article/view/301, 2011.
Maldonado, T., Alfaro, E., Fallas-López, B., and Alvarado, L.: Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using Canonical Correlation Analysis, Adv. Geosci., 33, 41–52, https://doi.org/10.5194/adgeo-33-41-2013, 2013.
Maldonado, T., Rutgersson, A., Amador, J., Alfaro, E., and Claremar, B.: Variability of the Caribbean low-level jet during boreal winter: large-scale forcings, International J. Climatol., 36, 1954–1969, https://doi.org/10.1002/joc.4472, 2016.
Martin, E. R. and Schumacher, C.: The Caribbean Low-Level Jet and Its Relationship with Precipitation in IPCC AR4 Models, J. Climate, 24, 5935–5950, https://doi.org/10.1175/JCLI-D-11-00134.1, 2011.
Muñoz, E., Busalacchi, A. J., Nigam, S., and Ruiz-Barradas, A.: Winter and Summer Structure of the Caribbean Low-Level Jet, J. Climate, 21, 1260–1276, https://doi.org/10.1175/2007JCLI1855.1, 2008.
Muñoz, E., Wang, C., and Enfield, D.: The Intra-Americas Sea springtime surface temperature anomaly dipole as fingerprint of remote influence, J. Climate, 23, 43–56, https://doi.org/10.1175/2009JCLI3006.1, 2010.
National Oceanic and Atmospheric Administration (NOAA): Earth System Research Laboratory, Physical Science Division, Boulder, Colorado, Datasets: http://www.esrl.noaa.gov/psd/data/climateindices/list/, 2016.
Ramírez, P.: Estudio Meteorológico de los Veranillos en Costa Rica, Nota de investigación 5, Instituto Meteorológico Nacional, Ministerio de Agricultura y Ganadería, San José, Costa Rica, 1983.
Smith, T., Reynolds, R., Peterson, T. C., and Lawrimore, J.: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006), J. Climate, 21, 2283–2296, 2007.
Solano, E.: Análisis del comportamiento de los períodos caniculares en Costa Rica en algunas cuencas del Pacífico Norte y del Valle Central entre los años 1981 y 2010, Tesis de Grado, Licenciatura, Escuela de Física, Universidad de Costa Rica, San José, Costa Rica, 2015.
Spence, J. M., Taylor, M. A., and Chen, A. A.: The effect of concurrent sea-surface temperature anomalies in the tropical Pacific and Atlantic on Caribbean rainfall, Int. J. Climatol., 24, 1531–1541, https://doi.org/10.1002/joc.1068, 2004.
Taylor, M. A. and Alfaro, E. J.: Climate of Central America and the Caribbean, in: Encyclopedia of World Climatology, edited by: Oliver, J. E., Springer, the Netherlands, 183–186, 2005.
Taylor, M. A., Enfield, D. B., and Chen, A. A.: Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall, J. Geophys. Res.-Oceans, 107, 10-1–10-14, https://doi.org/10.1029/2001JC001097, 2002.
Trenberth, K. E.: The Definition of El Niño, B. Am. Meteorol. Soc., 78, 2771–2777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2, 1997.
Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D., Marengo, J., and Mechoso, C. R.: Toward a unified view of the American monsoon systems, J. Climate, 19, 4977–5000, http://journals.ametsoc.org/doi/pdf/10.1175/JCLI3896.1, 2006.
Wang, C.: Variability of the Caribbean Low-Level Jet and its relations to climate, Clim. Dynam., 29, 411–422, https://doi.org/10.1007/s00382-007-0243-z, 2007.
Wang, C. and Enfield, D. B.: The Tropical Western Hemisphere Warm Pool, Geophys. Res. Lett., 28, 1635–1638, https://doi.org/10.1029/2000GL011763, 2001.
Wang, C. and Enfield, D. B.: A Further Study of the Tropical Western Hemisphere Warm Pool, J. Climate, 16, 1476–1493, https://doi.org/10.1175/1520-0442(2003)016<1476:AFSOTT>2.0.CO;2, 2003.
Whyte, F. S., Taylor, M. A., Stephenson, T. S., and Campbell, J. D.: Features of the Caribbean low level jet, Int. J. Climatol., 28, 119–128, https://doi.org/10.1002/joc.1510, 2008.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, Amsterdam, the Netherlands, Boston, USA, Volume 100, 3rd edn., 2011.
Xue, Y., Smith, T., and Reynolds, R.: Interdecadal changes of 30-yr SST normals during 1871-2000, J. Climate, 16, 1601–1612, https://doi.org/10.1175/1520-0442-16.10.1601, 2003.
Short summary
We studied the relationship between the midsummer drought (MSD) in Central America, and the sea surface temperatures (SST) of the neighbouring ocean in interannual scales. Besides, the motivation of this study is also to provide a systematic method for forecasting the MSD period. We found that the intensity and the magnitude of the MSD shown a strong association with the contrast in the surface temperatures between the eastern tropical Pacific, and the tropical north Atlantic.
We studied the relationship between the midsummer drought (MSD) in Central America, and the sea...