How kilometric sandy shoreline undulations correlate with wave and morphology characteristics: preliminary analysis on the Atlantic coast of Africa
R3C, DRP, BRGM, Orléans, France
A. Falqués
Applied Physics Department, UPC, Barcelona, Spain
Related authors
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Long Jiang, Theo Gerkema, Déborah Idier, Aimée B. A. Slangen, and Karline Soetaert
Ocean Sci., 16, 307–321, https://doi.org/10.5194/os-16-307-2020, https://doi.org/10.5194/os-16-307-2020, 2020
Short summary
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
J. P. Naulin, D. Moncoulon, S. Le Roy, R. Pedreros, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 16, 195–207, https://doi.org/10.5194/nhess-16-195-2016, https://doi.org/10.5194/nhess-16-195-2016, 2016
Short summary
Short summary
A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. It aims to identify the potential flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This system shows satisfactory results in the estimation of the losses related to Xynthia storm surge, which was used for the model's calibration.
T. Bulteau, D. Idier, J. Lambert, and M. Garcin
Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, https://doi.org/10.5194/nhess-15-1135-2015, 2015
Short summary
Short summary
Extreme value analyses of sea-level using tide-gauge measurements usually suffer from limited effective duration of observation which can result in large uncertainties, especially when outliers are present. To tackle this issue, a Bayesian MCMC method is developed integrating historical data in extreme sea-level analyses. A real case study shows a significant improvement in return values estimation and the usefulness of the Bayesian framework to predict future annual exceedance probabilities.
G. Le Cozannet, M. Garcin, T. Bulteau, C. Mirgon, M. L. Yates, M. Méndez, A. Baills, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 13, 1209–1227, https://doi.org/10.5194/nhess-13-1209-2013, https://doi.org/10.5194/nhess-13-1209-2013, 2013
Nil Carrion-Bertran, Albert Falqués, Francesca Ribas, Daniel Calvete, Rinse de Swart, Ruth Durán, Candela Marco-Peretó, Marta Marcos, Angel Amores, Tim Toomey, Àngels Fernández-Mora, and Jorge Guillén
Earth Surf. Dynam., 12, 819–839, https://doi.org/10.5194/esurf-12-819-2024, https://doi.org/10.5194/esurf-12-819-2024, 2024
Short summary
Short summary
The sensitivity to the wave and sea-level forcing sources in predicting a 6-month embayed beach evolution is assessed using two different morphodynamic models. After a successful model calibration using in situ data, other sources are applied. The wave source choice is critical: hindcast data provide wrong results due to an angle bias, whilst the correct dynamics are recovered with the wave conditions from an offshore buoy. The use of different sea-level sources gives no significant differences.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Giovanni Coco, Daniel Calvete, Francesca Ribas, Huib E. de Swart, and Albert Falqués
Earth Surf. Dynam., 8, 323–334, https://doi.org/10.5194/esurf-8-323-2020, https://doi.org/10.5194/esurf-8-323-2020, 2020
Short summary
Short summary
Sandbars are ubiquitous features of the surf zone. They are rarely straight and often develop crescentic shapes. Double sandbar systems are also common, but the possibility of feedback between inner and outer sandbars has not been fully explored. The presence of double sandbar systems affects wave transformation and can result in a variety of spatial patterns. Here we model the conditions, waves and initial bathymetry that lead to the emergence of different patterns.
Long Jiang, Theo Gerkema, Déborah Idier, Aimée B. A. Slangen, and Karline Soetaert
Ocean Sci., 16, 307–321, https://doi.org/10.5194/os-16-307-2020, https://doi.org/10.5194/os-16-307-2020, 2020
Short summary
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
J. P. Naulin, D. Moncoulon, S. Le Roy, R. Pedreros, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 16, 195–207, https://doi.org/10.5194/nhess-16-195-2016, https://doi.org/10.5194/nhess-16-195-2016, 2016
Short summary
Short summary
A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. It aims to identify the potential flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This system shows satisfactory results in the estimation of the losses related to Xynthia storm surge, which was used for the model's calibration.
T. Bulteau, D. Idier, J. Lambert, and M. Garcin
Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, https://doi.org/10.5194/nhess-15-1135-2015, 2015
Short summary
Short summary
Extreme value analyses of sea-level using tide-gauge measurements usually suffer from limited effective duration of observation which can result in large uncertainties, especially when outliers are present. To tackle this issue, a Bayesian MCMC method is developed integrating historical data in extreme sea-level analyses. A real case study shows a significant improvement in return values estimation and the usefulness of the Bayesian framework to predict future annual exceedance probabilities.
G. Le Cozannet, M. Garcin, T. Bulteau, C. Mirgon, M. L. Yates, M. Méndez, A. Baills, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 13, 1209–1227, https://doi.org/10.5194/nhess-13-1209-2013, https://doi.org/10.5194/nhess-13-1209-2013, 2013
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp., 2009.
Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, J. Geophys. Res., 111, F04011, https://doi.org/10.1029/2005JF000422, 2006a.
Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature, J. Geophys. Res., 111, F04012, https://doi.org/10.1029/2005JF000423, 2006b.
Ashton, A. D., Murray, A. B., and Arnault, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves, Nature, 414, 296–300, 2001.
Davidson-Arnott, R. G. D. and van Heyningen, A.: Migration and sedimentology of longshore sand waves, Long Point, Lake Erie, Canada, Sedimentology, 50, 1123–1137, 2003.
Falqués, A.: Wave driven alongshore sediment transport and stability of the Dutch coastline, Coast. Eng., 53, 243–254, 2006.
Falqués, A. and Calvete, D.: Large scale dynamics of sandy coastlines: Diffusivity and instability, J. Geophys. Res., 110, C03007, https://doi.org/10.1029/2004JC002587, 2005.
Falqués, A., Calvete, D. and Ribas, F.: Shoreline Instability due to Very Oblique Wave Incidence: Some Remarks on the Physics, J. Coastal Res., 27, 291–295, 2011.
Fayet, I. B. N.: Dynamique du trait de côte sur les littoraux sableux de la Mauritanie à la Guinée-Bissau (Afrique de l'Ouest): Approches régionale et locale par photointerprétation, traitement d'images et analyse de cartes anciennes, PhD Thesis, UBO, 2010.
Kaergaard, K. and Fredsoe, J.: Numerical modeling of shoreline undulations part 1: Constant wave climate, Coast. Eng., 75, 64–76, 2013a.
Kaergaard, K. and Fredsoe, J.: Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations, Coast. Eng., 75, 77–90, 2013b.
Kaergaard, K., Fredsoe, J., and Knudsen, S. B.: Coastline undulations on the West Coast of Denmark: Offshore extent, relation to breaker bars and transported sediment volume, Coast. Eng., 60, 109–122, 2012.
Rascle, N. and Ardhuin, F.: A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization, Ocean Model., 70, 174–188, 2013.
Ruessink, B. G. and Jeuken, M. C. J. L.: Dunefoot dynamics along the dutch coast, Earth Surf. Proc. Land., 27, 1043–1056, https://doi.org/10.1002/esp.391, 2002.
van den Berg, N.: Modelling the dynamics of large scale shoreline sand waves. PhD Thesis, Applied Physics Department, Universitat Politecnica de Catalunya, 2012.
van den Berg, N., Falqués, A., and Ribas, F.: Modelling large scale shoreline sand waves under oblique wave incidence, J. Geophys. Res., 117, F03019, https://doi.org/10.1029/2011JF002177, 2012.
van den Berg, N., Falqués, A., Ribas, F., and Caballeria, M.: On the mechanism of wavelength selection of self-organized shoreline sand waves, J. Geophys. Res., https://doi.org/10.1002/2013JF002751, accepted, 2014.