Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

CiteScore value: 2.0
CiteScore
2.0
SNIP value: 0.753
SNIP0.753
IPP value: 1.58
IPP1.58
SJR value: 0.478
SJR0.478
Scimago H <br class='widget-line-break'>index value: 37
Scimago H
index
37
h5-index value: 12
h5-index12
Volume 6
Adv. Geosci., 6, 63–67, 2006
https://doi.org/10.5194/adgeo-6-63-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Adv. Geosci., 6, 63–67, 2006
https://doi.org/10.5194/adgeo-6-63-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  09 Jan 2006

09 Jan 2006

Changes in the diet of hake associated with El Niño 1997−1998 in the northern Humboldt Current ecosystem

J. Tam1, S. Purca1, L. O. Duarte2, V. Blaskovic3, and P. Espinoza3 J. Tam et al.
  • 1Research Center for Oceanographic and Biological Fishery Modelling (CIMOBP), Peruvian Marine Research Institute (IMARPE), Lima, Peru
  • 2Laboratorio de Investigaciones Pesqueras Tropicales, Universidad del Magdalena, Santa Marta, Colombia
  • 3Trophic Ecology Area, Peruvian Marine Research Institute (IMARPE), Lima, Peru

Abstract. Hake (Merluccius gayi peruanus) predation plays an important role in the dynamics of the Humboldt Current ecosystem (HCE). Changes in the hake trophic habits associated with physical variability are expected to impact prey populations and to propagate through the food web. Time series (1995–2002) of (a) stomach contents of hake, (b) biomass estimations of fish prey species of hake, and (c) depth of the 15°C isotherm was analysed with the aim of exploring the impacts of El Niño 1997–1998 on the diet of hake. Biomass estimations of fish prey species were used to indicate resource availability, and depth of the 15°C isotherm to represent variability associated with the ENSO cycle in the physical environment of hake. The richness of prey species increased during the months when 15°C isotherm reached its deepest position, supporting the hypothesis of increased biodiversity (tropicalization) of the HCE during El Niño events. An increased variability in stomach fullness of hake was detected after 1999 which could indicate high heterogeneity in the food supply as a consequence of impacts of the warm event in the biotic community structure of the HCE, a physiological impairment of hake or an effect of the abrupt reduction in the mean total length of hake, postulated as a compensatory response to fishery pressure. Hake can be characterized as an opportunist predator according to the observed changes in its diet during 1995–2002. Overall, the diet of hake in the northern HCE exhibited transitory (e.g. increased richness of prey species in the stomach contents) and medium term (e.g. increased variability in feeding activity) responses associated with El Niño 1997–1998, which should be incorporated both in population dynamics and food web analyses.

Download
Citation