Regional assessment of the multi-decadal changes in braided riverscapes following large floods (Example of 12 reaches in South East of France)
Abstract. The district of the France Rhône basin is characterised by several braided reaches, preserved from the widespread disappearing occurred in the 20th century. Even if the overall pattern is evolving through a general river narrowing, some reaches have shown to be still active and have widened. The preliminary results suggest that differences in width pattern could be related to several factors, such as high magnitude and low frequency floods, and geographical position in the catchment which influences bedload delivery conditions and vegetation recruitment related to climate. From an initial set of 53 braided reaches, we selected 12 sites, distributed into four main hydro-geographical regions. Reaches were selected to be representative of the overall study area. We analysed the braiding width pattern and the vegetation pattern dynamic among five observation periods dating from the 1950s to the 2000s. We hypothesised that a comparative analysis of a detailed temporal trajectory (i.e. five dates) of a set of rivers within several hydro-geographical contexts would allow us to better distinguish the relative role of floods (in terms of magnitude and duration) and other controlling factors acting at the regional scale. We showed that active channel width is controlled mainly by Q10 flood and secondarily by bedload availability whereas island pattern is in large part independent of flood series characters. Moreover a clear regional differentiation, constant over time, in terms of riverscape response is observed, mainly opposing south-western and south-eastern reaches. This opposition depends on several concurring factors, i.e. the flood characters, the river activity, the human influence and the climate. Finally, these findings allowed us to highlight those sectors in which the braided pattern could disappear, and those sectors in which the braided pattern is still active, because critical processes responsible of channel dynamic are still present.