Journal cover Journal topic
Advances in Geosciences An open-access journal for refereed proceedings and special publications
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 2.0 CiteScore
    2.0
  • SNIP value: 0.753 SNIP 0.753
  • IPP value: 1.58 IPP 1.58
  • SJR value: 0.478 SJR 0.478
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 37 Scimago H
    index 37
  • h5-index value: 12 h5-index 12
Volume 10
Adv. Geosci., 10, 125–131, 2007
https://doi.org/10.5194/adgeo-10-125-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Adv. Geosci., 10, 125–131, 2007
https://doi.org/10.5194/adgeo-10-125-2007
© Author(s) 2007. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  26 Apr 2007

26 Apr 2007

Improved nowcasting of precipitation based on convective analysis fields

M. Steinheimer1 and T. Haiden2 M. Steinheimer and T. Haiden
  • 1Institute for Meteorology and Geophysics, University of Vienna, Austria
  • 2Central Institute for Meteorology and Geodynamics, Vienna, Austria

Abstract. The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis) developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite), forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL) flow convergence and specific humidity, lifted condensation level (LCL), convective available potential energy (CAPE), convective inhibition (CIN), and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

Download
Citation