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Abstract. A spatial characterization of mid-latitude
mesoscale rain fields from C-band radar measurements is
performed by means of a systematic analysis and mod-
elling of convective raincell shapes. To this aim a large
rainfall dataset, derived from an operational C-band dual-
polarized radar, has been continuously collected from 1996
to 1999. The radar-derived rain fields consist of 1558 grids
of 256×256 km2 with a spatial resolution of 1 km. A new
accurate and adaptive algorithm for raincell identification is
introduced and thoroughly discussed. From this analysis,
a quality-controlled set of 2601 raincells, together with the
radial rain intensities (or raincell horizontal profiles), is ex-
tracted. Three one-dimensional analytical models of rainfall
horizontal profile are reviewed and tested by best fitting their
parameters against estimated raincell data. The statistical re-
sults of this intercomparison are quantitatively analyzed and
discussed in terms of mean rainfall horizontal profiles and
root mean square errors.

1 Introduction

Spatial characterization of rainfall patterns has become im-
portant in various fields, such as meteorology, hydrology
and radio propagation (Austin and Houze, 1972; Bell, 1987;
Crane 1990; Marzano et al., 2001). As an example, in hy-
drology the interest to model rain fields is mostly due to the
need of initializing run-off models and to devise downscaling
methods in order to properly deal with sub-basin scales for
flood forecast (Veneziano et al., 1996; Willems, 2001). Fur-
thermore, spatial rain cell description is very important for
flood risk assessment of operational forecast systems, rainfall
classification schemes and for rain temporal characterization
within tracking procedures (Rigo land Llasat, 2004). Apart
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from the specific purpose, in order to model rain fields in a
realistic way it is necessary to resort to highly spatially re-
solved rainfall data, possibly derived from the integration of
weather radar, satellite sensor and raingauge network mea-
surements (Meija and Rodriguez-Iturbe, 1974; Wheater et
al., 2000; Ferraris et al., 2003; Marzano et al., 2001, 2002).

Weather microwave radars are powerful tools for rain
field monitoring due to their characteristics of wide areal
coverage, high sensitivity to hydrometeor electromagnetic
backscattering and fairly high spatial resolution, especially
at short to medium ranges (i.e. up to 125 km from the radar
site). Indeed, the accuracy of surface rain fields estimation
can be questionable and should be carefully considered un-
der some circumstances, as in the case of beam blockage, en-
hanced ground-clutter, anomalous propagation, bright band
contamination, strong path attenuation, second-trip echo am-
biguity and long-range error bias (e.g., Alberoni et al., 2001;
Marzano et al., 2004). Moreover, the relation between radar
backscattered power and rain intensity may depend on pre-
cipitation microphysical processes (e.g., Sauvageot, 1992).
Nevertheless, the radar-derived estimates can be considered
nowadays the major source for a robust spatial-temporal
characterization of rainfall features.

The automatic identification of a raincell from a radar im-
age is not a simple task. Rainfall patterns are quite complex
and, indeed, a convective raincell can exist either alone at
various stages (e.g., supercell) or within an organized cluster
or embedded in a stratiform region (Rigo and Llsat, 2004).
An identification of rainfall pattern can be performed by us-
ing either a bi- (2-D) or tri-dimensional (3-D) radar dataset.
In this work we have limited our attention to radar-based 2-D
techniques. The latter are usually designed so that a rain-
fall field is detected by means of a rainfall constant threshold
(Steiner et al., 1995). This approach is significantly prone
to the inclusion of sub-raincells or secondary maxima within
a single raincell. Several efforts have been also devoted to
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model the average horizontal profile of convective raincells.
Mid-latitude radar observations (Fèral et al., 2003) showed
that the rain rate horizontal distribution near the raincell peak
(its maximum) does not sharply decay as an exponential
function, but rather as a Gaussian one or as a combination
of these two functions. On the other hand, others works (Von
Hardenberg et al., 2003) showed that, on average and in a
tropical regime, the rainfall intensity decreases exponentially
from the raincell peak. These different results are probably
due to different data processing and to the climatology of the
measured raincells so that they cannot be generalized in a
straightforward manner.

The aim of the present work is to characterize the average
one-dimensional (1-D) horizontal structure of raincells de-
rived from weather radar images collected during four years
of operational activity, from 1996 to 1999, at mid-latitude.
With the previous issues in mind, the focus is twofold: i)
to set up a new accurate and objective procedure for con-
vective raincell identification; ii) to select the best analytical
model for describing the average 1-D raincell horizontal pro-
file using the available radar dataset. Section 2 is devoted to
illustrate the radar characteristics, the rainfield retrieval pro-
cedure and the new raincell recognition algorithm. In Sect.
3 the 1-D analysis of the average raincell shape is carried
out on all single-peaked raincells, previously identified, and
the three different shape models are introduced. The con-
clusions, in Sect. 4, summarize the differences between the
three raincell models implemented.

2 Raincell automatic recognition methodology

In this section, we will describe a methodology and a proce-
dure to recognize convective raincells in an automatic way.
Raincell patterns are derived from plan position indicator
(PPI) scans at the lowest elevation angle of a meteorologi-
cal C-band radar. Special attention will be devoted to isolate
single raincells belonging to a cluster of raincells.

2.1 Radar data pre-processing

Rainfall data were provided by the C-band operational
Doppler of S. Pietro Capo fiume (Bologna, Italy), located
along the Po-river valley in northem Italy (Alberoni et al.,
2001). This dual-polarization radar is placed on a tower with
a Cassegrain parabolic antenna (without radome cover), pro-
viding a half-power beam-width of 1.0◦ and a directivity of
about 45-dB. The klystron peak-power is 250 kW at 5.6 GHz
with an alternating horizontal-vertical polarization transmis-
sion and a dual pulse repetition frequency (PRF) system for
unfolding capability. Pulse widths of 0.5 ms (i.e., short pulse
with a re-sampled bin resolution of 250 m) and 1.5 ms (i.e.,
long pulse with a re-sampled bin resolution of 1500 m). The
receiver sensitivity is equal to 113 dBm. The typically used
maximum range is 250 km (with long pulse) and 125 km
(with short pulse) for the intensity and velocity mode, re-
spectively.

Radar data are acquired with a prescribed scanning strat-
egy during operational activities, consisting of 15 elevations
with an angular spacing of 1◦. Radial spatial resolution is
set to 250 m for short ranges (i.e., 125 km) and to 1 km for
long range (i.e., 250 km) scans, the latter being carried out
only twice per hour. Time sampling of radar volume data is
such that there are 4 acquisitions per hour (i.e., every 15 min)
being the dual-polarized one performed only twice per hour.
Procedures to correct for gas absorption, to remove ground-
clutter echoes and to identify anomalous propagation condi-
tions are routinely applied. Side-lobe effects at very short
ranges (less than 20 km) for low elevations are avoided by
choosing higher elevations not affected by this effect (Al-
beroni et al., 2001).

Four years of radar data, acquired from January 1996 to
December 1999 in an operational mode, have been consid-
ered in the present study. We have used only radar reflectiv-
ity at horizontal polarization, here indicated byZhh(r, θ, ϕ)

or simply Z(r, θ, ϕ), wherer is the range,θ the elevation
angle θ and ϕ the azimuth angleϕ. The radial resolu-
tion and the maximum range have been set, respectively, to
250 m and 125 km. Due to orography blockage in the south-
western sector of observation, at each range-azimuth bin lo-
cation we have extracted the value ofZ(r, θ, ϕ) relative to
the lowest available elevationθm using a radar visibility map.
The resulting polar map of measured lowest-binZ(r, θm, ϕ)

has been then projected on a regular 256×256-km2 Carte-
sian grid with 1-km horizontal resolution and (i, j) the in-
dexes alongx and y, respectively. In case more than one
Z(r, θm, ϕ) value belongs to the same Cartesian pixel (i, j),
an averageZ(r, θm, ϕ) value has been attributed to the pixel
itself applying the nearest-neighbourhood algorithm (Pratt,
1991). The output of this procedure has been the Carte-
sian map of the reflectivity factorZ(i, j) at each available
time step.1rFor an easy representation and interpretation,
Z(i, j) has been converted to surface rainrateR(i, j), using a
standard power law Z-R relation:R(i, j)=a·[Z(i, j)]b. The
latter has been computed for each pixel (i, j) and with the
coefficientsa andb equal to those of Marshall-Palmer (i.e.,
a=200, b=1.6 with R in mm/h andZ in mm6m−3). As a
result, the measured dataset has been converted into a tem-
poral series of 1558 rainrate mapsR (or frames) of 256×256
pixels.

2.2 Raincell identification algorithm

In this section a new raincell-identification algorithm is illus-
trated in detail. By means of this procedure, we have auto-
matically extracted 2601 raincells from the 1558 measured
rainfall Cartesian maps previously introduced. This raincell
extraction is essential before proceeding to any quantitative
evaluation of the shape of each raincell. The basic philoso-
phy of the proposed raincell recognition algorithm is to in-
troduce a variable lower threshold on each rainrate map in
order to delimitate single raincells which are, potentially, the
convective cores.
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The automatic identification algorithm is composed by the
following 8 steps repeated for all 1558 frames.

1. Finding all locations of the local maxima of the rainfall
field such that, for each pixel (iM , jM), the rainrate lo-
cal peakR(iM , jM) is larger than both its 8-connected
neighbor-pixel values and the threshold of 10 mm/h.

2. Sorting the local maximaR(iM , jM) in a decreasing or-
der so that it is possible to privilege the highest values
of raincell peaks.

3. Selecting a pixel box of sizeN×N of the rain fieldR

in order to define the sub-fieldRb within the box. At
each algorithm iteration, the center pixel ofRb(i, j) is
positioned on the current maximum location (iM , jM).
Note that past analyses of radar data showed that rain-
cells larger than about 20 km in equivalent diameter are
not numerous (Mesnard and Sauvageot, 2003, Féral et
al., 2000). Therefore, we have chosen the box sizeN

equals to 25 to include inRb the major portion of rain-
cells in order to capture its main spatial characteristics.

4. Computing the 2-D normalized autocorrelation function
(CRb) of Rb in order to extract an adaptive lower thresh-
old value (Rt low) for the raincell delimitation. This step
is crucial as, in this way, the raincell area is strictly
linked to the local spatial texture of raincell itself. If
we utilize an upper-left-corner justified definition for
theRb matrix, we can define the pixel−lagm (or n) as
the discrete distance between theRb upper left corner
pixel and the lower left (or upper right) corner pixel of
its shifted versionRb(i−m+N, j−n+N) (Pratt, 1991).
With these definitions in mind, the 2-D normalized au-
tocorrelation functionCRb(m, n), for a given lagm and
n, of the box-sized rain fieldRb(i, j) is computedI as
follows:

CRb
(m, n) =

∑
i

∑
j

Rb(i, j) · Rb(i − m + N, j − nN )∑
i

∑
j

R2
b(i, j)

(1)

where the indexes i and j vary in the
ranges Max[1,m−N + 1]≤i≤Min[N,m] and
Max[1, n−N+1]≤j≤Min[N, n] with Max and
Min denoting the maximum and the minimum of the
arguments, respectively. We emphasize that the indexes
m andn indicate the pixel-lags and vary in the range
[1, 2N−1] becauseRb(i−m+N, j−n+N) moves in
space overRb(i, j). Accordingly, CRb(m, n) is an
element of a matrix of size(2N−1)×(2N−1) which
describes the spatial features ofRb(i, j) of the current
frame. Note that, form=n=N , CRb(N, N) is equal to
unity by definition.

5. Averaging radial sections of the 1-D autocorrelation
CRb in order to derive the correlation length of the box-
sized rain fieldRb, as described in the following step.

If l is the index along thek-th radial sectionsk of Crb

for each raincell local maximum, taking four sections
CRb(l; sk) of CRb along x-axis, y-axis, positive bisec-
tor and negative bisector directions, the average one-
dimensional radial autocorrelationCRr(l) is defined as:

CRr (l) =
1

4

4∑
k=1

CRb
(l; sk) =

1

4

4∑
k=1

CRb
(m, n; sk) (2)

whereCRb(m, n; sk) is CRb(m, n) along thek-th sec-
tion andl varies in the range[1, 2N−1] along each sec-
tion. TheCRr(l) maximum is reached whenl=N and it
is equal to unity.

6. Computing the average correlation lengthLc of CRr(l)

defined as the discrete distance from theCRr maxi-
mum location (equal tol=N ) such thatCRr(l) is re-
duced of about 36%. By defining an additional square
sub-box centered on the current maximum (iM , jM) of
size (2Lc−1)×(2Lc−1), a lower thresholdRt low can
be finally computed as an average rain rate ofRb(i, j)

within this sub-box.

7. Identifying the raincell fieldRc, where the subscriptc
stands for raincell, starting from the current maxima
(iM , jM) and considering the 8-connected values of
Rc(i, j) larger thanRt low. The thresholdRt low is au-
tomatically set to 5 mm/h if this value is overtaken neg-
atively.

8. The previous steps from 3 to 7 are repeated for all local
maxima identified in the first step. Note that the lower
thresholdRt low is not the only threshold that needs to
be fixed within this procedure. The pixels belonging to
a generic raincell must be constrained to further limita-
tions such as:

i) all the pixel values of a given raincell cannot over-
come the raincell maximum;

ii) all the pixel values of a given raincell cannot be
larger than the lower threshold of the nearest cells
already identified.

Furthermore, we have to remark that sizes ofRb larger
than 25 pixels have been also explored, but this leads
to smaller values ofRt low. If Rt low is too small, it be-
comes almost impossible to delineate a single raincell.
For this reason, we have chosen, as a compromise, the
Rb size equal to 25 km.

An example of the identification algorithm results is
shown in Fig. 1. This figure displays different representations
of an extracted raincell, underlining its principal axes and ori-
entation as defined in Sect. 3. Notice that the thresholdRt low
has a spatial-correlation dependence and this feature tends
to ensure a fairly accurate single raincell identification even
when belonging to a cluster of raincells. As a matter of fact,
it is worth mentioning that these raincells may have multiple
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Fig. 1. An example of raincell identification. On the top panel,
the pixels belonging to the generic raincell (R(i, j) over threshold
Rt low) are shown. On the middle panel, the principal axesarad,
brad and the orientationθ0rad are superimposed to the raincell and
its surrounding area. On the bottom panel, a pattern example of real
raincell extracted is shown.

rainrate peaks, as clarified later on. From the previous analy-
sis applied to the whole available radar dataset, a set of 2601
raincells has been finally extracted.

3 Modelling raincell horizontal profiles

A common choice to model raincell horizontal profiles (or
raincell shapes) is to resort to an elliptical perimeter cen-
tered in the raincell peak. From available C-band radar data,
we have derived an average horizontal profile of rainrate and
tried to best fit these experimental shapes with three analyti-
cal rainrate profile models, as explained later on.

3.1 Horizontal profile estimation from radar data

In the following text the subscript “rad” will stand for “radar-
derived” estimated quantity in order to distinguish it from the
corresponding modeled one. For each identified raincell, the
principal axes and orientation have been calculated as fol-
lows:

mpq =

∑
i

∑
j

(i − iC)p(j − jC)qRcrad(i, j) (3)

arad =

{
[m20 + m02] +

√
(m20 − m02)

2
+ 4 · m11

2m00

}1/2

(4)

brad =

{
[m20 + m02] −

√
(m20 − m02)

2
+ 4 · m11

2m00

}1/2

(5)

θ0rad =
π

2
− tg−1

(
−

m11

m22 − a

)
with θ0rad ∈ [0, π) (6)

where(iC , jC) is the centroid pixel of the generic raincell
(Von Hardenberg et al., 2003),Rcrad(i, j) are the rain inten-
sities within the raincell (see Sect. 2.2),mpq is the centered
momentum withp andq momentum order,arad andbrad are
the principal and secondary axis lengths, respectively, and
θ0rad is the orientation angle of the raincell defined as in
Fig. 1.

Figure 2 shows the distribution of estimatedθ0rad orienta-
tion and ellipticityerad, defined as the ratioerad=brad/arad.
Our analysis confirms the results obtained by Von Harden-
berg et al. (2003) and Féral et al. (2000), showing a uniform
distribution of raincell orientations and a mean ellipticity of
about 0.5 (0.48 in this analysis).

Besides the principal axes, we have also extracted the two
sections rotated at 45◦ with respect to the principal axes
themselves. Once these sections defined, the rainrate hori-
zontal profiles along them have been extracted and then aver-
aged to obtain an azimuthally-mean rain-rate horizontal pro-
file Rcrad(l). Here the coordinatel is, of course, the dis-
cretized radial distance from the center of the single-peak
raincell.
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Fig. 2. Histogram of the 2601 raincells identified by means of the
proposed method. On the top panel, the distribution of the ellipticity
ratio erad=brad/arad is shown (with a mean value equals to 0.48).
On the bottom panel, the raincell orientation distributionθ0rad is
shown (with an apparent uniform distribution).

To identify only the decreasing average monotone shapes,
a pre-analysis on the existence of multi-peak structures has
been also performed. The approach has been based on the
computation of the spatial derivative of each single raincell
shapeRcrad(l)in order to identify local secondary maxima.
Only the 28% of total raincells detected have shown a sin-
gle peak trend and our study has been focused on this sub-
set of measurements. Single-peak raincell fields, obtained
from radar data processing described above, have been in-
dicated byRcsrad(l). A total number of radar-derived 2992
horizontal profiles (corresponding to 748 raincells) has been
processed and the overall average horizontal rainrate profile
<Rcsrad(l)> is shown in Fig. 3 by dotted line where the angle
brackets stand for ensemble averaging of all available pro-
files.

Fig. 3. On the top panel the ensemble average of the 2992 single-
pek raincell shapes<Rcsrad(r)> (black dots) is shown. The red
solid line is the best exponential fitting, whereas the dotted blue
line is the average Gaussian best fitting profile<RcsGAU(r)>. On
the bottom panel, the plot of the Log<RcsEXP(r)> (dotted line),
and the logarithm of mean shape Log<Rcsrad(r)> (solid line) is
shown. Both graphics indicate the exponential dependence of the
shapes over at least up to 8 km distance.

3.2 Analytical models of rainrate horizontal profiles

As mentioned, three analytical one-dimensional models of
rainrate horizontal profileRcs(l), derived from available lit-
erature, have been tested: the exponential (EXP), described
by Capsoni et al. (1987), the Gaussian (GAU), described
by Von Hardenberg et al. (2003) and the hybrid (HYB), de-
scribed by Feral et al. (2003). The HYB is a combination of
the GAU and EXP models with a rainrate threshold separat-
ing the two behaviors. The details of these one-dimensional
models are given in the Appendix for completeness Here it
suffices to underline that: i) the EXP and GAU model are
2-parameter models; ii) the HYB is a 4-parameter model. It
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Fig. 4. Scatterplots between observed and fitted points of all 2992
single-peak shapes. From upper to lower panel it is shown the Gaus-
sian GAU profile model (ARMSE=13.5 mm/h,ρR=0.9897), the
exponential GAU profile model (RMSE=8.21 mm/h,ρR=0.9937),
and the hybrid HYB profile model (ARMSE=2.94 mm/h,
ρR=0.9977).

should be mentioned that the all models are, indeed, a 2-D
rainrate pattern models, but here we share the objectives of
Von Hardenberg et al. (2003) limiting our attention to model
the average 1-D horizontal rainrate profile.

In order to evaluate the goodness of each raincell 1-D
model, the parameters of the latter have been retrieved by
a best-fitting procedure. The result of the fitting process is
an estimate of the unknown coefficients of the three rain-
rate models. To obtain the coefficient estimates of the n-th
raincell horizontal profileR(n)

cs (l), we have minimized the
summed square of residuals represented by the following
metricsd:

d =

Nr∑
l=1

(
R

(n)
csrad(l) − R

(n)
csMOD(l)

)2
(7)

whereNr is the number of profile radial points of the n-th
raincell R(n)

cs . From Eq. (7) it is clear that a residual is de-
fined as the difference, at the discrete distancel from the rain-
cell peak, between the n-th radar-observed horizontal profile
valueR

(n)
csrad(l)and the n-th modeled horizontal profile value

R
(n)
csMOD(l) (where MOD stands for EXP, GAU, and HYB).
It is worth recalling that the number of free parameters of

1-D raincell model to be retrieved from radar measurements
are different (i.e., 2 for EXP and GAU and 4 for HYB). More-
over, for the HYB model there is an increase of the number of
parameters due to its higher complexity. In fact,R

(n)
csHYB(l)is

the combination of two functions and the parameter retrievals
involve two minimization processes under the constraint ex-
presses from the continuity condition at the interface between
the 2 different shapes of the hybrid model (see Eq.(A4) re-
ported in the Appendix).

The left panel of Fig. 3 provides the average estimated
horizontal profile<Rcsrad(l)> superimposed to Exponential
<RcsEXP(l)> and Gaussian<RcsGAU(l)> best-fitting model
curves. On the right panel of the same figure it is plotted the
logarithm of the average shape compared with the pure ex-
ponential trend which results to be a straight line in this plot.
From this figure we can appreciate the good data fit of the
EXP model with respect to the GAU one, at least up to a 8-
km distance. On the other hand, the GAU model tends to
underestimate the average estimated rainrate maximum.

Figure 4, shows a scatterplot of the horizontal profile
due to the three models, that isRcsEXP(l), RcsGAU(l) and
RcsHYB(l), Rexp(r)Rgauss(r)Rhycell(r) computed by com-
paring the model fit with each of the 2292 radar-derived
raincell profileRcsrad(l).The average root mean square error
(ARMSE, expressed in mm/h) between all radar measured
Rcs(l) and modeledRcsMOD(l) (where MOD stands for EXP,
GAU, and HYB) was also calculated as follows:

ARMSE=
1

NcsNr

Ncs∑
n=1

Nr∑
l=1

(
R

(n)
csrad(l)−R

(n)
csMOD(l)

)2
(8)

with Ncs(=2292) is the number of considered single-peak
raincells. As a further indicator of model fitting goodness,
the correlation coefficientρR has been computed as follows:

ρR =
< R̃csrad(l) · R̃csMOD(l) >√
< R̃2

csrad(l) >< R̃2
csMOD(l) >

(9)

where the angle brackets indicate the ensemble average as in
Eq. (8) and the correlation coefficient has been defined by
using variables centered (indicated by a tilde in the previous
equation) with respect their average value. Comparing the
results in terms of ARMSE and estimation correlation coef-
ficient ρR, Rrad(r) it is clear that all raincell profile models
are highly correlated even though the ARMSE may quite dif-
ferent with a better accuracy due to the HYB model. The
ARMSE of the EXP model is better that that of the GAU
model with a discrepancy of about 64%, but the RMSE of
the HYB is, in turn, much better than that of EXP of about
179%.

To deepen the analysis of the rainrate profile modeling er-
ror, we have also analyzed the radial trend of RMSE along
the radial distancel from the raincell center, defined as:

RMSE(l)=
1

Ncs

Ncs∑
n=1

(
R

(n)
csrad(l)−R

(n)
csMOD(l)

)2
(10)

The behavior ofR(n)
csMOD(l) is illustrated in Fig. 5. The left

panel shows that, up to about 6 km, the error due to the EXP
model is less than the GAU one, indicating that the latter
shape is not always the worst form from this point of view.
As a final plot, Fig. 6 shows the cumulative distribution func-
tion of the correlation coefficientρR between each radar-
observed and best-fitted horizontal profile for the 3 consid-
ered models. The HYB model is again the most correlated
and it has a better overall behavior with respect to other pro-
file models, but at expenses of an increase of formulation
complexity.
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Fig. 5. Radial trend of the root means square error of the EXP, GAU
and HYB models against the radial distance from the center of the
single-peak raincell.

4 Conclusions

A spatial characterization of mid-latitude mesoscale rain
fields from C-band radar measurements has been performed
by means of a systematic analysis and modeling of convec-
tive raincell shapes. To this aim a large rainfall dataset,
derived from an operational C-band dual-polarized radar
and consisting of radar-derived rain intensities on a grid of
256×256 km with a spatial resolution of 1 km from 1996 to
1999, has been collected. A new accurate algorithm for rain-
cell identification has been introduced and discussed in de-
tail. The major feature of the proposed recognition procedure
is that it adopts variable and adapting thresholds, based on
the spatial autocorrelation of the local rainfall field, in order
to detect a raincell. From this analysis, a quality-controlled
set of 2601 raincells has been extracted and a total number of
2292 single-peak horizontal profiles have been automatically
identified.

Three one-dimensional analytical models of rainfall hor-
izontal profile, such as the exponential (EXP), Gaussian
(GAU) and hybrid (HYB), have been reviewed and tested
by best fitting their parameters against estimated raincell
data. The statistical results of this intercomparison have been
quantitatively analyzed and discussed in terms of mean rain-
fall horizontal profiles and root mean square errors . Bas-
ing only on the concept of 1-D average profile and using the
available C-band radar data, we have found out that the EXP
model is more representative with respect to the Gaussian
one at least up to 8 km from the center of the raincells. An-
alyzing all selected single-peak raincell profiles, it is con-
firmed the accurate behavior of the EXP model with respect
to the GAU one, but the best agreement has been obtained
using the HYB model. This means that 1-D raincell hor-
izontal profile is well approximated by the combination of

Fig. 6. The cumulative distribution function of the correlation coef-
ficientρR for the 3 considered models.

a Gaussian function and an exponential one, that is by the
model here called HYB. This result may be explained by
considering that, from a conceptual point of view, the Gaus-
sian component well describes the convective rainrate core
of the raincell, whereas the exponential component accounts
for the surrounding decaying or stratiform one. Of course,
a better accuracy is opposed to a larger complexity of the
hybrid-model pattern. A further improvement to be pursued
in future works is to carry out this radar-based model inter-
comparison by introducing 2-D raincell analytical models.

Appendix A Raincell horizontal profile models

The definition of the analytical expressions of the one- di-
mensional (1-D) horizontal profile models, implemented in
this work, is here briefly summarized. Ifr is the radial dis-
tance from the raincell peak andR(r) the radial rainrate pro-
file, we will indicateREXP(r), RGAU(r), RHYB(r) the 1-D
model profiles defining the exponential (EXP), the Gaussian
(GAU) and the hybrid (HYB) models as follows:

REXP(r) = RE · exp

(
−

r

rE

)
(A1)

RGAU(r) = RG · exp

{
−

r2

r2
G

}
(A2)

RHYB(r) =

RHG · exp

{
−

r2

r2
HG

}
if R(r) ≥ Rthyb

RHE · exp
{
−

r
rHE

}
if R(r) < Rthyb

(A3)

whereRE andrE are the maximum and slope scale of EXP
model,RG and r2

G are the maximum and variance scale of
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GAU model, and (RHG, r2
HG) and (RHE,rHE) are the maxi-

mum and scale of HYB model for the Gaussian and expo-
nential component, respectively, withRthyb the rainrate sep-
arating threshold.

For the hybrid model, defined in (A3), a further continuity
condition at the separation interface between the Gaussian
and Exponential trend, is needed:

RHG · exp

{
−

r2
t

r2
HG

}
= Rthyb = RHE · exp

{
−

rt

rHE

}
(A4)

wherert is the distance from the center of the raincell where
the Gaussian and exponential portion of the hybrid model
takes the same value equal at the separation thresholdRthyb.

The free parameters of the 1-D models, explained in
Eqs. (A1), (A2), and (A3), are respectively:

1. the maximumRE and the scalerE where the profile
REXP(r) decreases ofe−1;

2. the maximumRG and the square scaler2
G where the pro-

file RGAU(r) decrease of e−1;

3. the maximumRHG, the distancesr2
HG, rHE, where the

profile RGAU(r) andREXP(r) decrease ofe−1 and the
threshold separationRthyb between the Gaussian and
exponential trend.

Thus, the free parameters of the HYB model areRHG,
r2
HG, rHE, Rthyb which are computed by means of a min-

imization process between the observed and the modeled
rainrate shape. The amplitude of the exponential portion
RHE of the hybrid model is not a free parameter because,
from the continuity condition expressed by Eq. (A4), at the
separation interface,RHE is constrained to be dependent
from the other parametersRHG, r2

HG andRthyb.
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