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Abstract. Soil gas measurements are extensively utilized for
seepage detection in natural hydrogen exploration; hydrogen
concentration in the soil exhibits significant temporal and
spatial variability. We developed an in-soil hydrogen concen-
tration monitoring instrument, named MONHyTOR, capable
of up to 1s sampling rate with up to months of autonomy.
Laboratory tests using a closed chamber demonstrate the ac-
curacy of the instrument for diffuse gas flow and a monitor-
ing campaign conducted in the southwest of France yielded
several interesting recordings. Each field dataset begins with
a hydrogen concentration peak linked to the drilling of the
borehole during installation, where parameters from fitting
an exponential decay to its decrease indicate the effects of
soil type on hydrogen diffusivity and retention in the soil.
While the origin of the measured hydrogen is not identified
in this paper, our long-term monitoring data suggest that soil
gas movements vary with air pressure and temperature val-
ues, as well as water circulation in the soil. This paper shows
that sampling rate in the order of seconds is appropriate for
the commonly observed wavelengths of hydrogen concentra-
tion variation in the soil and data processing, and the absence
of pump allows for a study on proxies for soil gas diffusivity.

1 Introduction

Molecular hydrogen or Hy, herein referred to as hydrogen,
has become increasingly important with key applications in-
cluding the desulfurization of fossil fuels and ammonia pro-
duction (Hé&ussinger et al., 2011). Following technological
developments such as fuel cell, hydrogen is now considered
as an eco-friendly candidate for the primary energy mix, as
its combustion only yields water. At present, the vast ma-

jority of hydrogen is produced by industrial processes such
as natural gas steam reforming and petroleum partial oxida-
tion (Baade et al., 2001) which generate considerable green-
house gas. Fortunately, there is substantial scientific evidence
that shows that hydrogen can occur naturally in the subsur-
face, referred to as natural or white hydrogen. The discovery
and subsequent studies of intense hydrogen outgassing via
a well in Bourakébougou, Mali (Maiga et al., 2023, 2024;
Prinzhofer et al., 2018) and in a chromite mine in Bulqizé,
Albania (Truche et al., 2024) have demonstrated that geolog-
ical processes can produce hydrogen in significant quantities,
and the presence of a reservoir formation and a competent
cap rock can result in its accumulation.

In the absence of such intense outgassing, soil gas mea-
surements and/or analysis at shallow depths are widely uti-
lized for preliminary de-risking in natural hydrogen ex-
ploration. Given that hydrogen concentration in the air is
0.5 ppm, elevated levels in the soil may indicate a fluid seep
from deep sources and/or deep accumulations (Larin et al.,
2015; Lefeuvre et al., 2022; Xiang et al., 2020; Zgonnik et
al., 2019). The spot-measurement technique using portable
gas analyzer such as the BIOGAS 5000 can highlight the
spatial distribution of hydrogen concentration, which ex-
hibits metric-scale sparsity (Frery et al., 2021; Loiseau et
al., 2024; Zgonnik et al., 2015). Furthermore, repeated spot-
measurements in the same location indicate its variability in
time (Davies et al., 2025). Observing such temporal variation
may offer insights to the recharge rate of the soil in hydrogen
and requires long-term monitoring. In Moretti et al. (2021)
and Prinzhofer et al. (2019), results from monitoring using
PARHyS by ENGIE show both diurnal and sporadic concen-
tration peaks within a subcircular topographical depression
in Brazil, colloquially known as “fairy circles”.
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Considering the highly variable temporal and spatial dis-
tribution of hydrogen seeps, one of the challenges faced dur-
ing the exploratory phase is the scarcity of monitoring in-
struments with adequate sampling rate and autonomy that
are fairly cost-effective to be used in an array. To meet this
need, we developed a hydrogen concentration monitoring in-
strument named MONHyTOR (patent pending as of the sub-
mission of this paper). Since early 2024, a fleet of MONHy-
TORs has been deployed in France as part of a monitoring
campaign yielding several interesting recordings. This paper
aims to discuss the instrument, the test results in a controlled
environment, and the first field datasets.

2 The MONHyTOR

For the development of MONHyTOR, our measurement phi-
losophy is based on the assumption that hydrogen generated
in the subsurface subsequently migrates towards the surface
via preferential pathways (Lefeuvre et al., 2021; Saspiturry et
al., 2024; Zwaan et al., 2025). Past the saturated groundwater
zone, hydrogen traverses the vadose zone and thus transito-
rily alters hydrogen concentration in the soil before reach-
ing the atmosphere. MONHyTOR is designed to monitor hy-
drogen concentration at 1 m depth, where soil temperature is
relatively stable, i.e., not or minimally affected by daily air
temperature variation (Lv et al., 2018).

The current version of MONHyTOR is a 1028.8 mm long
and 30mm in diameter probe-shaped non-pumping instru-
ment equipped with an electrochemical sensor at 950 mm
lengthwise. The sensor provides in-soil hydrogen concentra-
tion measurements in the 0 to 1000 ppm range with 0.1 ppm
display resolution and £5 % full-scale error, as well as soil
temperature with 0.1 °C display resolution and £0.2 °C rel-
ative error. Data is digitalized directly on the sensor which
presents cross sensitivity only with carbon monoxide. The
single gas entry point is via the lower extremity, where water-
proofing is ensured by a hydrophobic membrane and a heat-
shrinkable sleeve that protect the sensor from transient water
accumulation as shown in Fig. 1a. Relative humidity inside
the instrument is constantly recorded and regulated ensuring
proper functioning of the electronics.

The probe is connected to an interchangeable acquisition
box containing rechargeable lithium-ion batteries and a data-
logger where data is stored in a microSD card, enabling up to
months of use in full autonomy. Connecting the acquisition
box to a computer by a USB-C cable via a terminal emula-
tor allows for real-time data display and parameter setting,
where sampling rate is adjustable to up to 1 s between sam-
ples. Installing the MONHyTOR in the field requires drilling
a borehole of slightly greater dimensions than the probe. The
top of the probe and the acquisition box can be fully buried
and rendered completely invisible for more discrete use, and
an additional plastic box can be, and often is, added for pro-
tection as seen in Fig. 1b and c.
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3 Laboratory test

Quantifying the accuracy of the instrument requires a labo-
ratory apparatus that delivers precise gas injections in a con-
trolled environment. The setup shown in Fig. 2a comprises
a sample cylinder with gas chromatography-measured con-
tent of 4.17 % H, and 95.83 % Na, i.e., 4.17 x 10* ppm and
9.583 x 10° ppm respectively (1), a high-pressure gas regula-
tor (2), a low-pressure gas regulator (3), a sampling coil with
1900 mm length and 2mm inner radius (4), a quarter-turn
valve (5), a MONHyTOR (6), a cylindrical closed chamber
(7), and a reference sensor identical to that used in MONHy-
TOR (8). The objective is to evaluate the effects of the design
on gas flow by comparing measurements by the MONHy-
TOR to the reference sensor located inside the chamber but
outside the probe, both operating at 1s sampling rate. The
protocol consists of flushing the sampling coil, saturating it
with the Hp-N, gas mixture at 1 mbar relative, then open-
ing the valve to let gas flow from the coil to the chamber.
Note that upon opening the valve, the 1 mbar overpressure in
the sampling coil dissipates instantly into the significantly
larger total apparatus volume. The resulting tiny and very
short-lived pressure gradient only causes negligible airflow.
Hence, presuming a purely diffusive gas flow, the isothermal,
isobaric, and unidirectional transfer of any molecule can be
calculated using the unidirectional Fick’s first law in Eq. (1)

€ G 1) [mols™ ' m™?] (1)

J(z,t)=—D

where J is the molar surface flux (mols~! m~—2), D is the
diffusion coefficient of a gas through another gas (m?s~1),
C is the gas concentration (mol m~3), and z is the distance in
direction of diffusion (m) (Palmes et al., 1976).

To adapt this general equation to our system, we con-
sider a two-box geometry with Vo) = 24 mL and Vepamper =
3800 mL corresponding to the volumes of the sampling coil
and the chamber-probe assembly respectively. The two are
connected by a circular surface of cross-sectional A with
2 mm radius corresponding to the valve opening which acts
as a choke point. Diffusivity of hydrogen in the excess of
air at 20°C is 7.56 x 107> m?s~! (Cathles and Prinzhofer,
2020). Given the metric scale of the setup, the gradient is
approximated as the difference of molar concentration AC
(mol m_3) over 1 m distance L and is time dependent. The
number of moles that goes through the choke point per sec-
ond Q (mols~') can thus be approximated following Eq. (2)
obtained by multiplying both expressions in Eq. (1) by A
and assuming concentration uniformity in Ve and Vehamber
which eliminates dependence on z.

AC (1)

O0t)=J(z,t)A~DA [mols™!] 2)

Assuming all studied gases behave like ideal gas, C in Vo
and Vihamber and thus AC at each time step are known

https://doi.org/10.5194/adgeo-67-57-2025



N. Adjie et al.: In-soil hydrogen concentration monitoring using MONHyTOR 59

(2)

Electrochemical sensor
([H,], T, and RH)

Heat-shrinkable
sleeve

Hydrophobic
membrane

7

:',:';f
22

Gas entrance

7

000000000
TZZ
7%
227

3ER
26

2

97

—

30 mm

Figure 1. (a) Section-view diagram of the lower extremity of MONHyTOR where [H,] is hydrogen concentration, T is temperature, and RH
is relative humidity. (b) Diagram of MONHyTOR during autonomous field use. (¢) Image of MONHyTOR installed in the field with protec-
tive plastic box. To drill the borehole, a combination of a Bosch GBH 18V-45C rotary hammer and a 1300 mm long and 36 mm or 40 mm
diameter stainless-steel drill bit is used, with the former set to hammering drill mode operating at up to 300 rotations and 2740 strikes min~!

with 12.5] of strike force.

through the amount of substance n (mol) and are calculated
using the general gas equation (PV = nRT). This operation
is performed in a loop and independently for N;, O,, and H»
where Q affects n and thus AC, which will in turn modify Q
for the next iteration until equilibrium is reached. Further-
more, the electrochemical sensors measure hydrogen con-
centration in ppm, denoted as xHj, which is a relative con-
centration rather than molar concentration C used in Eq. (2).
Its value is determined by calculating the ratio between hy-
drogen molecules and the sum of all other molecules present
in the system as shown in Eq. (3).

nHy (1)
(nHa (t) + nNa (1) + nO2 (1))

To validate our theoretical calculation of hydrogen concen-
tration through flux using Fick’s law of diffusion, hydro-
gen concentration is also calculated differently using Boyle-
Mariotte law in Eq. (4) where P and V denote the par-
tial pressure of hydrogen and the volumes respectively. This
equation, while does not modelize the dynamics, provides a
more intuitive approach to calculate the concentration of a
confined gas.

xHy (1) = 10%[ppm]  (3)

xH3 coit Peoil Veoil

xH2 chamber = [ppm] 4

(Peoil Veoil + Pehamber Vehamber)
The results of the theoretical calculations, and measurements
by MONHyTOR and the reference sensor are presented in
Fig. 2b. Firstly, hydrogen concentration curves calculated by
Fick’s and Boyle-Mariotte law converge towards a maximum
value of approximately 260 ppm, indicating the proper func-
tioning of the diffusion model. Secondly, both measured hy-
drogen concentration curves exhibit good agreement with the
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theoretical calculations by Fick’s law, confirming a purely
diffusive gas flow within the apparatus. Finally, the measured
hydrogen concentration by MONHyTOR and the reference
sensor show minimal differences, within the 5 % error mar-
gin of the sensors, indicating that the design of the instrument
causes little to no impact on diffuse gas flow.

4 Test sites in the southwest of France

Among the known natural hydrogen generation mechanisms,
four main geological abiotic sources are considered consist-
ing of (1) water radiolysis by the decay of radioactive el-
ements (Lin et al., 2005), (2) mechanoradical by rock com-
minution (Hirose et al., 2011), (3) magmatic degassing (Gail-
lard et al., 2011), and (4) hydrothermal alteration of ultra-
mafic rocks (Malvoisin et al., 2012). The upper mantle of the
earth is composed of peridotite: an ultramafic, iron-rich, and
silica-poor rock containing mainly olivine and pyroxene (An-
derson and Bass, 1984).The hydration of such iron-bearing
minerals is known as serpentinization and is marked by the
general reaction in Eq. (5) (Ramdohr, 1967; Thayer, 1966 in
Coveney et al., 1987) where hydrogen is a byproduct of fer-
rous iron Fe>* oxidation into ferric iron Fe>*. Serpentiniza-
tion reaction rate is temperature dependent with a peak reac-
tion rate at 300 °C (Malvoisin et al., 2012).

6IMg, sFe05)Si0s]  +7H20

=3[(Mg)3Si205(OH)4] ~ +Fe304 +H, (5)
olivine +water

— serpentine +magnetite ~+hydrogen

The presence of hydrogen-rich fluids has been reported in
ophiolitic contexts such as in the Philippines (Abrajano et
al., 1988), Turkey (Etiope et al., 2011), Oman (Neal and
Stanger, 1983), and Albania (Truche et al., 2024) as well as
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Figure 2. (a) Diagram of the laboratory setup, only elements number 5 through 8 are to scale. (b) Measured (with 1s sampling rate) and
calculated hydrogen concentration as a function of time. Start time corresponds to the valve opening.

inverted rift contexts with notable examples such as Kansas
(Coveney et al., 1987) and European Alps (Giuntoli et al.,
2024). Moreover, in Lefeuvre et al. (2022), the foothill ge-
ological context is said to provide favorable conditions for
natural hydrogen generation by serpentinization. Said study
focuses on the North Pyrenean Zone whose geological his-
tory contains two major events: (1) mid-to-late-Cretaceous
hyper-extensive phase with mantle exhumation and (2) end-
Cretaceous tectonic inversion which is at the origin of the for-
mation of the Pyrenees. As a result, the area houses a wedged
mantle with the top approximately 10 km deep providing po-
tential connections to the surface via deep thrusts, namely
the North Pyrenean Frontal Thrust and the North Pyrenean
Fault (Chevrot et al., 2018; Lehujeur et al., 2021; Wang et
al., 2016). Given the geothermal gradient of the region of
27°Ckm™! (Bonté et al., 2010), the top of the wedged man-
tle is a suitable place for hydrogen generation with the deep
faults acting as water infiltration and eventually hydrogen mi-
gration pathways (Lefeuvre et al., 2022; Saspiturry et al.,
2024). Figure 3 shows a Bouguer anomaly map in which
higher values indicate the presence of a denser material — in
this case the mantle — relative to its surrounding, and where
locations of MONHyTOR for data presented in this paper are
superimposed.

The first site is located in the commune of Sauveterre-
de-Béarn, within the Mauléon Basin and more specifically
the SauveTerre exploration permit area belonging to TBH2
Aquitaine. MONHyTORs were installed in proximity to the
surface expression of the North Pyrenean Frontal Thrust,
where soil gas measurements by Lefeuvre et al. (2022) indi-
cate elevated levels of CHy, CO,, H», and 222Rp, suggesting
deep gas leakage along the fluid-draining fault. The second
site is in the commune of Buzy, East of the Mauléon Basin
and also in proximity to the North Pyrenean Frontal Thrust.
This area features what is interpreted as a surface expres-
sion of a salt weld that may provide quasi-vertical connec-
tion for seepage from the sub-salt, which can potentially be
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a reservoir for hydrogen (Tari, 2025). Unpublished spot gas
measurements data from the area show elevated levels of hy-
drogen in the soil.

For the third site, the idea was to test MONHyTOR in
sandy soil. In France, many wells drilled for the oil and
gas exploration have shown elevated amounts of hydro-
gen content, in particular six of which are located in the
Parentis Basin (Lefeuvre et al., 2024), which may indi-
cate a hydrogen-fertile zone. The Parentis Basin presents an
aborted rift structure with a mantle top at around 20 km depth
according to Tugend et al. (2014), and as suggested by the
Bouguer anomaly data in Fig. 3. At such depth, tempera-
ture of the mantle top is likely too high for serpentinization,
thus the potential hydrogen generation source is yet to be de-
termined. Our experimental approach consists of installing
MONHyTOR near sealed wells which may act as preferential
seep pathways for hydrogen originated from deep geological
processes (Bachu, 2017).

5 Field data: post-installation hydrogen concentration
peak for site-specific diffusivity study

In each field dataset, a hydrogen concentration peak is con-
sistently observed immediately after inserting the probe into
the recently drilled borehole as can be seen in Fig. 4a to ¢
representing the three study sites. Since the timing of these
peaks coincides with the installation, the arrival of hydro-
gen is suspected to be linked to the installation method of
the probe. Assuming that hydrogen is present in the soil,
drilling a borehole using a rotary hammer and a drill bit dis-
turbs the equilibrium of the soil which displaces its hydro-
gen content. The resulting borehole acts as an accumulation
sink for its surrounding area resulting in the rapid concen-
tration increase. Hydrogen then diffuses away from the bore-
hole into the surrounding soil pores with lower concentra-
tions and partly to the atmosphere, causing the decrease in
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Figure 3. Bouguer anomaly map (Wang et al., 2016, modified) su-
perimposed by locations of MONHyTORs for data presented in this
paper. AB is the Arzacq Basin, AM is the Aldudes Massif, MB is
the Mauléon Basin, NPF is the North Pyrenean Fault, NPFT is the
North Pyrenean Frontal Thrust, NPZ is the North Pyrenean Zone,
SPFT is the South Pyrenean Frontal Thrust, and SPZ is the South
Pyrenean Zone.

the measured concentration that roughly follows an exponen-
tial decay.

By looking at both axes of Fig. 4a to c, it is clear that the
maximum concentration and the duration of the decay are
separated by orders of magnitude between the three sites,
which we suspect are effective proxies for site-specific soil
gas diffusion rate. A study on diffusivity proxies can be con-
sidered as the MONHyTOR is a non-pumping instrument,
and its design has little to no effect on diffuse gas flow as
demonstrated by the laboratory test. We are thus confident
that any change in soil gas diffusivity is a direct consequence
of the soil, and not the instrument. Quantitative analysis is
carried out by fitting an exponential decay to a portion of the
decrease of each curve following Eq. (6)

xHj (1) = xHag e [ppm] (6)

where xHj is the hydrogen concentration (ppm), xHo is the
characteristic initial hydrogen concentration (ppm), —« is the
hydrogen concentration decay rate (s~'), and ¢ is the time
(s). Fitting is carried out by inversion using the least squares
method on the proxy parameters: xHpo and «, and the results
are presented in Fig. 4d where the ellipsoids represent the
range of xHpp and o values that yield inversion error inferior
or equal to two-and-a-half times the minimum error for each
point. Given the observed linear trend in log-log plot that ap-
pears to be dependent on the site, we propose an interpreta-
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tion pertaining to the soil type found at each site according
to our visual observation of cuttings removed by the drill bit.

Firstly, the “Buzy” site is a grazing land with very clay-
rich and slightly rocky soil. The post-installation peaks have
the highest average xHyp and the lowest average «, with
some xHjp values exceeding the upper range limit of our
instrument of 1000 ppm, which may provide a rough esti-
mate of the measured peak had the sensor have longer range.
Secondly, the “Sauveterre-de-Béarn” site has the interme-
diate soil type: clay-rich but less than that of the “Buzy”
site, with average xHpg and « value between those of the
other two sites. Thirdly, the “Parentis Basin” sites are in
a coastal area where the soil is quartz sand with, in sev-
eral locations, a thin hardened layer at around 60 cm depth
known as alios (Gourdon-Platel, 1977). This site yields post-
installation peaks with the lowest average xHpg and highest
average .

Gas diffusivity in the soil Dy is often represented as rel-
ative to gas diffusivity in air Dy under the Dg/Dg symbol.
Dy is generally inferior to Dy due to the decrease in cross-
sectional within the pores available for gas movement as well
as the increase in the diffusion distance due to tortuosity (Sal-
lam et al., 1984). D/ Dy increases with air-filled porosity (as
opposed to water-filled) (Fujikawa and Miyazaki, 2005) but
decreases with clay content and bulk density (Fu et al., 2024,
Miiller et al., 2019). Thus, more clay-rich soils with higher
xHyp and lower o exhibit larger retention effect on soil gas
through the described diffusivity decrease. Inversely, D/ Dy
is higher in well-draining soils with lower xHj¢ and higher
« such as sand, resulting in lower soil gas retention.

While the apparent link between soil type and diffusivity
proxies xHpp and o seems to substantiate the soil gas reten-
tion argument, the possibility of artificial hydrogen gener-
ation by drill-bit metamorphism and the cracking of organic
matter as described in Halas et al. (2021) cannot be ruled out.
Moreover, Davies et al. (2025) further highlights the link be-
tween drilling-induced artifacts with soil properties, most no-
tably soil strength, defined as resistance to penetration. Our
field observations indicate that soils with greater drilling dif-
ficulty due to their mineralogical properties and/or rocks en-
countered by the drill bit tend to yield higher post-installation
hydrogen peaks.

6 Field data: long-term monitoring

With reference to the introduction of this paper, the pres-
ence of temporal variations of hydrogen concentration in
the soil may indicate fluid seep from the deep subsurface.
In the previous section, however, the observed concentration
peaks are a result of soil disturbance during probe installa-
tion. In this section, we will discuss variations that occur be-
yond the post-installation peak, i.e., in an undisturbed con-
dition, where gas flow to and from the probe is supposedly
controlled by natural events. For interpretation purposes, the
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Figure 4. (a) Compilations of post-installation hydrogen concentration peaks from the “Buzy” site featuring very clay-rich soil (b) from
the “Sauveterre-de-Béarn” site featuring less clay-rich soil, and (c¢) from the “Parentis Basin” sites featuring sandy soil. Note the axis scale
change for both hydrogen concentration and time. (d) Log-log plot for results from the inversion of o and xHjyq using the least squares
method with the ellipsoids representing the range of o and xHjy( values that yield inversion error inferior or equal to two-and-a-half times

the minimum error for each point.

datasets are presented superimposed with weather data com-
prising air pressure, air temperature, and precipitation. It
should be noted that weather data for the “Buzy” site were
measured by nearby weather stations downloaded from http:
/lwww.meteociel.fr (last access: 13 September 2024), and an
on-site weather station was available for the “Sauveterre-de-
Béarn” site, courtesy of TBH2 Aquitaine.

6.1 “Buzy” site

The first dataset originates from one of the eight probes in-
stalled in the “Buzy” site operating at 10 s sampling rate and
is presented in Fig. 5. As typical for recordings by MON-
HyTOR, the signal begins with a post-installation hydrogen
concentration peak that diminishes following Eq. (6) where
xHyo and « of 176 ppm and 4.63 x 107 s~ ! respectively
are obtained by inversion using the least squares method de-
scribed in Sect. 5. It should be noted that the amplitude is
significantly lower than typical for the site due to aerating
and flushing the borehole prior to probe insertion as part of a
trial in the field protocol.

As hydrogen molecules of the post-installation peak dif-
fuses away from the probe, a heavy rainfall took place and
rainwater infiltrates into the soil at an estimated rate of
10mmh~! for loamy clay textured soil (Ibrahim-Bathis and
Ahmed, 2016) observed on site. Water molecules reduce soil
gas diffusivity (Fujikawa and Miyazaki, 2005) starting from
the topsoil which favors gas accumulation below. This leads
to the return of the post-installation peak hydrogen molecules
towards the probe as suggested by the trend reversal, i.e., the
start of the gradual concentration increase, at approximately
24 h figure time.
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Locally near and around the probe — probably accelerated
by the presence of the borehole — water accumulates and
obstructs the gas entrance of MONHyTOR marked by the
hydrogen concentration plateau at around 53 h figure time.
Once sufficiently drained, the local water accumulation ef-
fect disappears, and gas entry continues as indicated by the
hydrogen concentration curve resuming its upward trend. In
the field scale, an order-of-magnitude calculation of water in-
filtration time suggests that water would reach the 1 m depth
mark around 100 h after the rainfall, which very roughly co-
incides with the time of the maximum hydrogen concentra-
tion of the 5d long peak. Subsequently, the first meter of
soil gradually drains allowing for gas diffusivity to increase
once more favoring gas migration toward the atmosphere, in-
dicated by the concentration decrease.

Additionally, the role of air pressure on hydrogen concen-
tration in the soil might also be considered, as our data show
that both share a general trend with a time delay. Soil gas
concentration dependency on air pressure is also observed
in long-term monitoring data from Brazil in Cathles and
Prinzhofer (2020) and a mathematical model in Massmann
and Farrier (1992), where it is associated to pressure-driven
airflow and atmospheric air penetration into the soil respec-
tively.

6.2 “‘Sauveterre-de-Béarn” site

Figure 6 presents the second dataset which originates from
one of six probes deployed in the “Sauveterre-de-Béarn” site
operating at a sampling rate of 5s. At the very beginning of
the monitoring, a post-installation peak occurred (not shown

here) and around one month later, concentration variation
that appears to have diurnal cyclicity appeared. Such oscilla-
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Figure 5. Monitored hydrogen concentration and soil temperature data by MONHyTOR with 10s sampling rate from the “Buzy” site
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portion of the post-installation peak yielding xHpp = 176 ppm and o = 4.63 x 107351,

tion took place during a very hot week in southwest of France
with air temperature reaching over 40 °C. However, tempera-
ture at 1 m depth, i.e., where the electrochemical sensor is lo-
cated, remains relatively stable and unaffected by the diurnal
variation. Superimposing the hydrogen concentration and air
temperature curves clearly shows a correlation between the
two as both of their upper envelope — representing a longer
wavelength trend — seem to share similar tendency. Further-
more, the existence of three hydrogen concentration peaks on
12 August appears to coincide with that of air temperature.
This type of oscillations has been observed in and around
“fairy circles” in Brazil (Moretti et al., 2021; Prinzhofer et
al., 2019), in the Eastern Alps of Austria using MONHyTOR
(Tari, 2025), and in Central California along the San Andreas
and Calaveras Faults (Sato et al., 1984, 1986).

As mentioned previously, the “Sauveterre-de-Béarn” site
has been extensively studied by Lefeuvre et al. (2022) who
found evidence of fluid migration along the North Pyre-
nean Frontal Thrust. Assuming that the soil is recharged with
deep-origin gases via the fault, their migration in the first me-
ters of soil is dependent on soil properties. While the data
suggest that diurnal temperature variation does not penetrate
to 1 m depth, soil properties and fluid equilibrium above it
may vary daily with air temperature (Lv et al., 2018) and are
thus likely to modify gas circulation at 1 m depth. Beyond
the assumption that hydrogen is generated by deep geologi-
cal processes, the possibility of other sources such as superfi-
cial biogenic production cannot be excluded as highlighted in
Etiope et al. (2024) and the references herein. In this case, the
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analysis and interpretations regarding the apparent link with
air temperature would differ significantly and should also ac-
count for the eventual bacterial consumption in the first me-
ters of soil, as done in a model by Myagkiy et al. (2020).

7 Conclusions and Outlook

This paper showcases the capabilities of MONHyTOR in
monitoring hydrogen concentration in the soil. A sampling
rate in the order of seconds seems appropriate for the
commonly observed hydrogen concentration variation wave-
lengths in the field as it allows for (1) detecting and track-
ing from minute to day-long variations associated to weather
events, and (2) quantitative analysis by least squares in-
version of post-installation peaks with various decay dura-
tions. Devoid of a pump, the instrument causes no artifi-
cial pressure-gradient induced airflow; a study on diffusivity
proxies on the post-installation peaks can thus be considered.
Our results suggest that the characteristic initial concen-
tration xHpp and decay rate o of a post-installation hydro-
gen concentration peak appear to be linked to soil gas reten-
tion, which is affected by soil gas diffusivity and thus dif-
fer according to soil type. Moreover, long-term monitoring
data indicate that what may be perceived as gas flux through
changes in concentration at 1 m depth may not represent the
actual recharge rate of the soil, as it could perhaps indicate an
outgoing flux in the soil-atmosphere exchange system driven
primarily by soil properties and atmospheric parameters.
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Figure 6. Monitored hydrogen concentration and soil temperature data by MONHyTOR with 5s sampling rate from the “Sauveterre-de-
Béarn” site featuring diurnal hydrogen concentration peaks that appeared around one month after deployment. Weather data from an on-site
station, courtesy of TBH2 Aquitaine, of precipitation, air pressure, and air temperature are superimposed. Air temperature presents diurnal

variations but soil temperature at 1 m depth is relatively stable.

Hence, for natural hydrogen exploration, it is recom-
mended to take into consideration the weather and the inher-
ent properties of the soil when measuring hydrogen concen-
tration at shallow depths to assess potential deep flux contri-
bution. Assuming equal deep flux in two pedologically dis-
tinct sites, one might measure different hydrogen concentra-
tion levels in one site compared to the other according to the
gas retention capacity of the first meter of soil, combined
with the effects of atmospheric parameters at the moment
of measurement. In addition, ascertaining the origin of the
measured hydrogen — whether geological, biological, or arti-
ficially induced — appears difficult based solely on hydrogen
concentration measurements. A comprehensive understand-
ing of hydrogen concentration variation in the soil would
require in-depth geochemistry and biological studies to ad-
dress first order questions including bacterial generation and
consumption of hydrogen, as well as the physico-chemical
processes involved when drilling the soil.

Data availability. Laboratory test data presented in Sect. 3, post-
installation hydrogen concentration peak data presented in Sect. 5,
and long-term field monitoring their corresponding atmospheric
data presented in Sect. 6 are available in text file format at Zenodo
(https://doi.org/10.5281/zenodo.15688216, Adjie et al., 2025).
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