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Abstract. Geochemistry is usually the computational bottle-
neck in coupled reactive transport simulations, which ham-
pers the complexity of the systems and of the processes
they can investigate. In recent years, promising speedups
have been obtained by substituting the numerical solution of
geochemical models with approximated surrogates borrowed
from artificial intelligence and machine learning (AI/ML).
In the framework of the DONUT/EURAD project a set of
benchmarks were defined to assess the performance and the
accuracy of different surrogate approaches in settings rele-
vant to the safety assessment of nuclear waste repositories,
such as the surface complexation and exchange of U(VI) on
clay. In this context, this work introduces am original surro-
gate modelling approach based on recursive partitioning of
parameter space, which exploits prior domain knowledge for
the training. The surrogate, which can be represented as a
decision tree, hence the DecTree name, performs dimension-
ality reduction by identifying functional relationships be-
tween outputs and input variables using a straightforward
non-monotonic extension of the Spearman’s rank correlation
coefficient. New predictions are then interpolated from the
partitioned training data. Applied to a low-dimensional geo-
chemical model, DecTree shows virtually no training time
and excellent accuracy, ensuring a throughput of around
500 000 predictions per second on a single CPU core.

1 Introduction

Safety assessment of nuclear waste disposal sites requires
large-scale reactive transport models (Jacques et al., 2021;
Claret et al., 2022; Kolditz et al., 2023), which are however
computationally intensive, with geochemistry usually repre-
senting the bottleneck from a numeric point of view. In re-

cent years the scientific community has more and more ex-
plored different strategies in order to remove such compu-
tational bottleneck, especially by borrowing methods from
Artificial Intelligence and Machine Learning (AI/ML) to ob-
tain so called low-fidelity or surrogate models for geochem-
istry (Jatnieks et al., 2016; De Lucia et al., 2017; Laloy
and Jacques, 2019; Guérillot and Bruyelle, 2020; Prasianakis
et al., 2020; De Lucia and Kühn, 2021). The general idea is
to pre-train a ML-model on a dataset obtained by classical
numerical geochemical simulations and to employ the sur-
rogate in coupled simulations, thus trading accuracy for im-
proved performance. This approach has been particularly in-
vestigated in the context of nuclear waste disposal both in en-
gineered barriers (cement) and in different types of host rock
(e.g., Laloy and Jacques, 2022; Kolditz et al., 2023; Demirer
et al., 2023; Hu and Pfingsten, 2023), but also for sensitiv-
ity analysis and uncertainty propagation (e.g., Turunen and
Lipping, 2023; Sochala et al., 2024).

In the context of recently concluded DONUT european
project (Claret et al., 2022), a benchmarking initiative has
been initiated specifically to bring together expertise in geo-
chemical modelling and in the application of ML/AI meth-
ods (Prasianakis et al., 2024a). The consortium defined and
shared datasets depicting different geochemical systems of
increasing complexity, solved with numerical geochemical
simulators (Prasianakis et al., 2024a). These datasets served
as test-bed for benchmarking different ML/AI regressors;
participants to the initiative employed their method of choice,
e.g., neural networks or gaussian processes, trying to repro-
duce the numerical data with the highest accuracy.

This study showcases an original entry to the aforemen-
tioned initiative, and specifically applied to the simple bench-
mark about surface complexation and exchange of uranium
onto clay, introduced in Sect. 2.1. This entry is based on
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the same general principles of the DecTree numerical ex-
periment (De Lucia and Kühn, 2021), however with a novel
implementation and some key differences. For example, the
original DecTree (version 1) approach consisted in a physics-
based recursive partitioning of parameter space based on the
identification of bijections among variables, both inputs, out-
puts and some user-defined engineered features derived from
domain knowledge, such as law of mass action and mass con-
servation. Such non-linear partition is representable as a tree,
where the edges are physically meaningful and thus inter-
pretable conditions, and each leaf identifies a distinct param-
eter region in which each output variable can be regressed in
terms of a minimal number of input variables. In this new ap-
plication, detailed in Sect. 3.1, bijectivity has been replaced
with the more general notion of functional association, and
the computationally inexpensive heuristic adopted to identify
it is discussed in Sect. 3.2. Finally the performance and the
accuracy of this method in the application to the benchmark
are discussed in Sect. 4.

2 Data: geochemical system and training data

2.1 The geochemical system: surface complexation of
U(VI) on clay

The considered geochemical system represents the isotherm
(25 °C) sorption of hexavalent uranium on clay as function
depending on the initial total amount of U(VI) in the sys-
tem and pH value. Batch (0D) geochemical models consid-
ering 1 g montmorillonite and 1 L of water in presence of a
background NaCl concentration of 0.1 molL−1 were numer-
ically simulated using widely adopted geochemical simula-
tors; only the calculations and the resulting training and vali-
dation datasets obtained through Orchestra (Meeussen, 2003)
were considered in this study. Surface complexation and
cation exchange were modelled after Bradbury and Baeyens
(1997) and the thermodynamical parameters for U(VI) sorp-
tion on montmorillonite were taken from Marques Fernan-
des et al. (2012, Table 2). The mineral phase metaschoepite
(UO3 : 2H2O) was allowed to precipitate upon reaching sat-
uration. Its dissolution reaction can be written:

UO3 : 2H2O+ 2H+
 UO+2
2 + 3H2O (R1)

with logK= 5.96. In order to control the coverage of a broad
range of pH in the final equilibrium solutions, the system was
titrated with either HCl (Acid) or NaOH (Base). The total
initial amount of U and pH constitute hence the two degrees
of freedom of the system, or inputs in ML-terms.

The targeted results of the geochemical simulations, in-
cluded in the training dataset, are summarized in Table 1.
They encompass: total aqueous uranium, U_aq; total amount
of sorbed uranium, U_s, itself consisting of the sum of ex-
changed, U_ex, and in surface complexes, U_sc; and the
amount of precipitated metaschoepite. Amounts of Acid or

Table 1. Output variables in the benchmark.

Name Description Unit

Acid HCl added to the system mol
Base NaOH added to system mol
U_aq Total dissolved U mol
U_s Total sorbed U mol
U_sc Total U in surface complexes mol
U_ex Total U exchanged mol
Metaschoepite Amount of Metaschoepite mol
Kd U in solid/in solution Lkg−1

Kd_sc U in surface complexes/in solution Lkg−1

Kd_ex U exchanged/in solution Lkg−1

Table 2. Input parameters and ranges in the training dataset.

Name Unit Min Max

U mol 1× 10−9 1× 10−2

pH [–] 2 12

Base needed to reach the prescribed pH are considered out-
puts as well; note that for uniformity of the original bench-
mark across the conventions of several geochemical simu-
lators, a minimal value for either variable was set to 10−9

instead of 0.
Further derived output variables are partition coefficients

of uranium, expressed as Kd values, in terms of Lkg−1.
Three different Kd are computed, with subscripts indicating
the considered fraction: Kd_s for the ratio of U in the solid
phase and in the aqueous phase; Kd_sc and Kd_ex for the U
fractions in surface complexes and at exchange sites, respec-
tively.

2.2 The training and validation datasets

The geochemical simulations introduced above have two
free variables: total uranium and pH. For the purpose of the
benchmark, uniform bivariate random samplings were drawn
by latine hypercube in the logarithmic space pH× log10U,
meaning that the samplings are uniform in the cartesian space
[2,12]× [−9,−2] (cf. Table 2).

For a given random seed, samples of increasing length
were generated: 5000, 20 000, 50 000 data points are used as
training sets; validation datasets from a different seed com-
prising 20 000, 50 000 and 500 000 entries for validation. The
coverage of the parameter space of the training dataset à
20 000 points is presented in Fig. 1. The colour-codes of the
points in the figure will be explained in the next section.
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Figure 1. Map of the uniform sampling in the coordinates pH and
log10(U) for the 20 000 points dataset.

3 Methods

3.1 DecTree: Recursive partition of parameter space

The main idea of the DecTree approach is to exploit domain-
specific knowledge for the training of the surrogate model.
For the above introduced geochemical system, such a priori
knowledge consists of:

1. either Acid or Base are larger than 1× 10−9

2. for the {pH, log10U} combinations where
metaschoepite precipitates, the geochemical sys-
tem honours its law of mass action, and thus they
are fundamentally distinct from those where no
precipitation occurs

3. known mass balance equation for uranium across
sorbed, exchanged, metaschoepite, and aqueous phase.

The mass balance equation, written in terms of the vari-
ables included in the training dataset, reads:

U= U_aq+U_sc+U_ex+Metaschoepite (1)

It is easy to recognize that the first two facts of the a priori
knowledge each define disjointed subsets within the train-
ing data. This can be clearly visualized in Fig. 1: the data
points are coloured evaluating first the boolean condition
“Acid> 1× 10−9” (or, equivalently, its complement), result-
ing in a non-linear binary partition. Secondly, in each of the
two subregions, the second condition “metaschoepite> 0”

(or its complement) is evaluated, resulting in a further binary
split. The successive, hierarchical application of binary splits
results in the four colour-codes of Fig. 1, much like a clas-
sical phase diagram separates fundamentally distinct regions
based on thermodynamics.

The first learning task for the DecTree surrogate is hence
to identify these regions, or equivalently their boundaries.
This is in all effects a classical space partitioning problem.
While many ML algorithms can solve it, a straightforward
geometric approach was here preferred, based on the inex-
pensive computation of convex hull of a set of points. The
convex hull is defined as the smallest closed convex polygon
that encloses all the points in the set (Serra, 1982); assuming
convexity ensures that the hull is unique and its computation
very quick. Such a polygon is stored by DecTree as node of
the tree, since it represents the boundaries of homogeneous
regions identified from the data.

Note that the convexity of sets of points isn’t guaranteed.
DecTree addresses this issue by first computing convex hulls
for both the region where a condition is true (such as mineral
occurrence) and its complement. It then analyzes the con-
fusion table of resulting in-sample classifications by means
of point in polygon algorithm (Serra, 1982), which simply
checks if a point lies inside a polygon or on the bound-
ary, and is particularly efficient to compute in case of con-
vex polygons. The absence of false positives for one hull
is heuristically interpreted as evidence of that region’s con-
vexity, and is finally retained in the model. When neither
subregion is convex, DecTree reverts to a more general but
less precise concaveman parametric generalization (Park
and Oh, 2012), followed by further morphological operations
such as dilation of the hull (Serra, 1982), followed by the
computation of the intersections between the dilated concave
hull and its complement, in order to maximize the area cov-
ered by the hull while resolving possible overlaps.

Once the hierarchy of space partitions in terms of region
boundaries is learned, DecTree assesses the functional de-
pendence among all possible input-output combinations in
each of the resulting subset of training data. The importance
of such exploratory step is illustrated in Fig. 2, which dis-
plays a matrix of scatterplots between all variables in a Dec-
Tree leaf. Very scattered point clouds imply no visible corre-
lation; however in many instances a clear functional depen-
dence appears (marked in red), which can be leveraged to
simplify the prediction. The screening for functional depen-
dence is performed via a heuristic extension of the Spearman
rank-based correlation coefficient ρ, discussed in Sect. 3.2.

DecTree keeps track of the explained output variables in
a leaf. The outputs identified as function of only one input
are marked as “explained”, since they can be predicted by bi-
variate interpolation (cubic splines). The remaining outputs
can be either predicted by the known mass balance equation,
if all but one term in such equation are already explained;
or, in the general case, they must be predicted by multivari-
ate interpolation from all the inputs. In the current DecTree
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Figure 2. Matrix of scatterplots visualizing the dependencies between inputs (pH, log10U) and some of the outputs in a DecTree parti-
tion (Base> 1× 10−9 and Metaschoepite> 0). Many perfect functional relationships appear, hence allowing for simplification or model
reduction in the prediction step if identified correctly in the learning phase.

implementation, interpolation is performed via the highly ef-
ficient Multilevel B-spline Approximation (MBA) method
(Lee et al., 1997; Hjelle, 2001). The application of MBA re-
quires some heuristic setting such as the degree of the under-
lying B-splines and the ratio of the dimensions’ ranges.

The partition of training data after the hierarchical splits
together with the indication of the required form of predic-
tion for each output (bivariate, multivariate interpolation, or
computation via mass balance) ultimately constitute the final
leaf of a DecTree surrogate. The actual training data hence
are retained as interpolation set (data from which interpola-
tions are performed) in a DecTree model.

Note that all the aforementioned operations, convex hull,
point-in-polygon check and MBA could be extended to
higher dimensions than two, realistically up to dimension 5.
This is however not yet explored at the moment, and proving
this claim would require an implementation of these meth-
ods which is currently not available in the author’s software
environment.

3.2 Measures of functional association

In statistics and data science, a measure of dependence
or statistical correlation between sets of points is a long-
standing problem (e.g., Chatterjee, 2020). The well-known
Pearson correlation coefficient only measures linear associ-
ations, while rank-based Spearman’s ρ and Kendall’s τ can
deal with non-linear monotonic relationships. As a reminder,
ρ is defined as the correlation coefficient between the ranks
of two random variables:

ρ =
cov(R(X),R(Y ))
σR(X)σR(Y )

= 1−
6
∑
d2
i

n(n2− 1)
(2)

where cov is the covariance operator, σ the standard devia-
tion, R the rank operator and d the difference between the
two ranks of the ith observation. By definition, ρ ∈ [−1,1]
and it takes the extreme values if and only X and Y are in
a perfect order relation. Kendall’s τ (Kendall, 1938) and the
successively introduced Hoeffding’s D (Hoeffding, 1948) are
rather statistical tests and as such they must be interpreted;
while they capture general types of dependence, those do not
again include non-monotonic relationships and do not guar-
antee to have a defined numerical value when the observa-
tions are in measurable functional dependence (Chatterjee,
2020).

Further measures have been devised in order to obtain re-
liable and fast association metric between variables in the
general non-linear and non-monotonic case (Griessenberger
et al., 2022, and references therein) both in presence of
noise or not. Among them we can cite: Distance Correlation
dCor (Székely et al., 2007), Maximal Information Coeffi-
cient MIC (Reshef et al., 2011), the copula-based quantifica-
tion of asymmetric dependence qad (Junker et al., 2021) and
Chatterjee’s ξ (Chatterjee, 2020). All these methods are im-
plemented in open source, freely available R extension pack-
ages and were tested for the purpose of this study in three
different configurations (Fig. 3): (a) polynomial of degree 3
with added noise; (b) sinusoidal function; (c) non-function:
different values of y are associated to the same x value.

However, none of these measures applied to the datasets
from the considered benchmark were completely satisfying
as a reliable measure of functional dependence. dCor and
qad proved too computationally intensive for the purpose of
this work; MIC, while being much faster, did not distinguish
between perfect, non-noisy relationship and functional rela-
tionship, as it can be seen in Fig. 3c, which displays such
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Figure 3. Comparison of different measures of bivariate associa-
tion for variables with and without noise. SNM: Spearman Non-
Monotonic (this work); dCor: Distance Correlation (Székely et al.,
2007); ξ : Chatterjee measure (Chatterjee, 2020); qad: Quantifica-
tion of Asymmetric Dependence (Junker et al., 2021); MIC: Max-
imal Information Coefficient (Reshef et al., 2011). (a) n= 5000,
polynomial of degree 3 with added gaussian noise; (b) n= 5000, sin
function; (c) n= 1840, non-functional relationship between U_aq
and U_sc from the uranium benchmark (partition Base> 1× 10−9,
metaschoepite> 0). The CPU time reported in seconds is rounded
to the nearest third decimal digit.

kind of relationship. Chatterjee’s ξ performed very well both
in computational speed and in capturing the needed informa-
tion; however, its computed final value in many cases only
approaches unity for perfect functional association, hence re-
quiring user decision to define a “threshold” above which a
functional relationship could be reliably inferred.

Under the assumption of non-noisy relationship between
the free variable x and the tested variable y, a straightfor-
ward semi-parametric extension of the Spearman coefficient
for the non-monotonic case is possible. It relies on identifica-
tion of local minima and maxima of the x,y function, a very
inexpensive operation requiring only lagged differencing of
order two of the y vector ordered for increasing x values.
These extremants divide by definition the parameter space of
the x,y relationship in monotonic intervals. For each interval

i in which enough data points are present, the classical Spear-
man’s ρi of Eq. (2) is then computed. Contiguous intervals
in which |ρi | = 1 can then be joined to cover the region of
parameter space in which a perfect functional association is
recognized. For the purpose of this work, the computed val-
ues (SNM in Fig. 3, standing for Spearman Non-Monotonic)
are the arithmetic mean of the absolute values of all the com-
puted ρi . This extension is indeed only semi-parametric since
the minimum number of points needed in a monotonic in-
terval must be chosen – the value of 5 is used throughout
this work. A naive implementation of SNM in the R language
(Listing A1) is given in appendix. In particular, it is so imple-
mented that even if just one interval holds not enough points,
the function returns 0 instead of the average of the mono-
tonic ρi . However, SNM guarantees to return 1 if and only
if it is applied to perfectly functional relationships. The lat-
ter characteristic is not prioritized in the other metrics, which
also do not guarantee to obtain 1 in case of perfect functional
dependence (cf. ξ in case (b)), but capture “approximately
functional” relationship.

As it can be seen in Fig. 3, SNM behaves as intended in
all three cases, while being on par with ξ in computational
speed even in the naive implementation of Listing A1, and
can hence be relied on when inferring “physical behavior”
from data. A further straightforward extension of the SNM
would be to identify the sub-intervals in which the relation-
ship between two variables is functional. This however is left
for future work.

4 Results and discussion

As reminder, the benchmark described in Sect. 2.1 has two
independent features, total U and pH, and comprises 10 dis-
tinct outputs, of which 6 are primary and the other 4 could be
derived. However, all the outputs in the training dataset were
directly predicted by DecTree in this exercise.

All input and output variables were log-transformed be-
fore the DecTree learning phase, with exception of pH (left
untouched), and the amount of mineral metaschoepite, which
was scaled by a factor of 1000. Note that if mass bal-
ance is used to predict an output, this has to consider back-
transformed variables, while all bi- and trivariate interpola-
tions are operated in the transformed parameter space, thus
introducing a slight systematic bias in DecTree predictions.
This also implies that the variables’ preprocessing must be
known by DecTree and hence constitutes one input to the
routine.

The “physical knowledge” given to DecTree as input is:
the disjointed occurrence of either Acid or Base; the fact
that metaschoepite is pure mineral; and the mass balance
Eq. (1). DecTree operates a first split of the {log10U, pH}
space based on the condition log10Acid>−9. Since neither
the region where the condition is true nor its complement
are convex, the algorithm reverts to computing the concave
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Figure 4. Output of the DecTree surrogate approach represented
as a binary tree for the U-pH benchmark from the DONUT ML-
benchmark initiative. The leaves of the surrogate indicate functional
dependencies of outputs to the inputs: within each leaf, a mono-
or bivariate interpolation of the training data returns the predic-
tions. Spline stands for cubic splines, MBA for Multilevel B-spline
Approximation bivariate interpolation. This tree is explainable by
construction: it recognizes from the data that when the mineral
metaschoepite occurs, the underlying system honours a “latent hid-
den constraint” which reduces its degrees of freedom. This results in
a functional dependence of all or most output variables on a single
input dimension in the corresponding regions.

hull. Each resulting subspace is further partitioned learning
the region of metaschoepite occurrence, this time by con-
vex hull. Within the four resulting subspaces, DecTree then
correctly identifies functional dependencies between outputs
and inputs. This is particularly evident in the leaves where
metaschoepite occurs, where their number is elevated. Re-
maining variables are predicted by multivariate interpolation
via the MBA method. The final form of the learned tree sur-
rogate for this benchmark is displayed in Fig. 4.

Accuracy and performance. The current non-parallelized
implementation of DecTree achieves excellent results in re-
producing the validation data. In particular, DecTree is char-
acterized by virtually no training time, competitive predic-
tion throughput, and excellent accuracy. DecTree is able to
produce results for all combinations of the three available
dataset for training and four for validation in under 10 s us-
ing one single CPU core (Intel Xeon W-2133 CPU, up to
3.60 GHz).

Figure 5 showcases scatterplots between true and pre-
dicted outputs for four variables U_aq, U_sc, U_ex, and
metaschoepite, obtained with a DecTree model trained on the

50 000 samples dataset and evaluated on the 20 000 valida-
tion set. All plots are in log-log scale to ensure capturing of
discrepancies also at lower values. Two metrics are further-
more reported in each panel: the classical Root Mean Square
Error (RMSE), and the relative (per observation) Mean Ab-
solute Percentage Error (MAPE) which is capable to capture
discrepancies at very low ranges:

MAPE=
100
N

∑∣∣∣∣yi − ŷiyi

∣∣∣∣ (3)

whereN is the number of observations, yi are the true values
and ŷi the predicted. As such, the MAPE is defined only for
strictly positive “true” yi . Since however many of the vari-
ables have 0 as a physically meaningful parameter, in the
cases in which yi = 0, the ratio in Eq. (3) is substituted by
0 if the predicted ŷi are zero, and 1 otherwise. More de-
tails and a more in-depth discussion of the metric choice
can be found in Prasianakis et al. (2024a). The advantage
of the thus defined MAPE is that it can be read as a percent-
age: MAPE= 2.2× 10−2 means 0.022 % relative error. This
makes also MAPEs comparable between different variables,
which is not possible with the standard RMSE.

Note that no variable was predicted by mass balance in the
tree of Fig. 4. This allows to check plausibility of predictions,
evaluating the lost mass of U in the outputs. In Fig. 5 the
points exceeding 1 % error of the initial total U are plotted
in red: this criterion captures most of the outliers in those
variables. The reported metrics include those outliers, while
of course in view of application to coupled reactive transport
simulations, those points would be rejected.

The single main factor controlling the accuracy of the sur-
rogate predictions is in any case the hierarchical partitioning
based on geometry. The misclassification of validation points
is limited (i.e., 14 points in the 20 000 validation set when
DecTree is trained on the 50 000 training dataset, cf. Fig. 5).

The MBA approximator suffers from some over- and un-
dershooting near the borders of the interpolation domain, but
only a minimal amount of validation points are actually af-
fected by this problem. Again, refusing to predict points near
the region boundaries would easily improve the accuracy of
the surrogate predictions in a coupled RTM scenario, dele-
gating the “full physics” geochemical simulation. It is intu-
itive that such an approach profits greatly from refined sam-
pling near the “physical boundaries” or transition regions in
the parameter space, since DecTree relies on geometric com-
putations to learn them. Conversely, within each region, the
data could actually be downsampled far from those bound-
aries without incurring significant loss of accuracy, given
the smoothness of the response surfaces. Since in general
the prediction speed depends quadratically on the amount of
points used for interpolation, less retained points would fur-
ther increase the throughput of DecTree.

Table 3 reports training and prediction timing on 1 single
core. The training time is completely negligible, 50 000 data
points are processed in about 0.24 s. The throughput of the
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Figure 5. Scatterplot of selected DecTree predictions against validation dataset. All variables on logarithmic scale in both axes. Training
data: 50 000 points; validation data: 20 000 points. From this figure it is visible how many variables span many orders of magnitude. Red
points indicate predictions which incur in a mass balance error for uranium higher than 1 %. These points would be rejected in a coupled
reactive transport simulator, but they are included in the displayed statistics.

Table 3. Training and prediction time for the DecTree surrogate for the different training and validation datasets. Throughput is in-
versely proportional to the number of data retained for interpolation. MAPE(Meta) stands for Mean Absolute Percentage Error for mineral
metaschoepite.

Tr. Data Val. Data Train Pred Throughput MAPE (Meta)
n× 103 n× 103 s s pred per s× 103 %

5 5 0.026 0.13832 36 0.951
20 5 0.093 0.30483 16 0.400
50 5 0.396 0.59895 8 0.265
5 20 0.025 0.15228 131 1.026
20 20 0.094 0.32884 61 0.421
50 20 0.242 0.64704 31 0.192
5 500 0.026 0.61121 819 0.551
20 500 0.090 0.96130 520 0.341
50 500 0.237 0.98045 510 0.145

prediction is however heavily impacted by the amount of data
retained in the interpolation set. This is because the data are
irregularly sampled, and each interpolation must setup a data
structure and perform a search for neighbouring points once,
at initialisation. Still, the prediction is very fast, achieving

around 500 000 predictions per second when trained on the
50 000 dataset.

For comparison, the numerical simulator used to com-
pute the training and validation datasets has a throughput of
around 40 000 simulations per second on a single core on the
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same desktop machine used to evaluate the DecTree perfor-
mance as in Table 3. More details about the the efficiency
of different methods and of geochemical simulators can be
found in Prasianakis et al. (2024a).

The here described single-core implementation of Dec-
Tree could be further improved by parallelization, in par-
ticular to increase the prediction throughput. In the learning
phase, parallelization can be employed in the screening for
functional dependence within each partition. In the predic-
tion phase, a linear increase in prediction throughput can be
expected, provided enough requests are there to make up for
the overhead.

The interpolation from scattered 2D data is the bottleneck
during prediction: this part could theoretically profit from a
GPU (Graphic Processing Unit) implementation. However
there are more fundamental improvements in the algorithm
still needed before looking into these technical implementa-
tion details, especially the ability to deal with more complex
systems and higher dimensionalities.

5 Conclusions and future work

The physics-based DecTree approach demonstrates promis-
ing results when applied to low-dimensional geochemical
benchmark related to sorption of U(VI) on clay. With re-
spect to the original DecTree version (De Lucia and Kühn,
2021), this application considers datasets which uniformly
cover the range of input variables. The principles of op-
erating a non-linear recursive parameter space partitioning
were implemented via geometric algorithms. The same prin-
ciples can be leveraged to substantially reduce the required
training time for many black-box AI/ML surrogates, such as
Gaussian processes and artificial neural networks. Further re-
search is required to extend its applicability to more com-
plex systems, beginning with mechanisms to embed domain
knowledge for chemical processes other than sorption and
precipitation or dissolution of pure mineral phases. This con-
cerns both the implementation and the actual construction of
the method itself. In particular, the current implementation
cannot deal with nested or disjointed mineral occurrences.
This prevented its application to other benchmarks from the
DONUT project, such as those for the cementitious systems
(Prasianakis et al., 2024a).

The DecTree approach achieves its high accuracy by inter-
polating new predictions directly from the training data and
by reducing the dimensionality of interpolation for variables
for which functional dependence is identified. To this end, a
straightforward extension of the Spearman’s rank coefficient
has been devised for non-monotonic relationships.

Approximators such as MBA and the algorithms of com-
putational geometry such as convex hull and point-in-
polygon are well defined in higher dimensions, but their ac-
tual efficiency remains to be assessed in higher dimensional-
ities.

Appendix A: Computing the non-monotonic Spearman
coefficient

Listing A1. R code implementing Spearman’s ρ (function Spear)
and the non-monotonic extension SpearmanNonMonotonic
adopted in this study. Note that this implementation does not deal
with missing values in either of the two variables for which func-
tional dependence is checked.

Code and data availability. The code used in this pa-
per can be obtained contacting the author. The training
and validation datasets will be available at Zenodo at
https://doi.org/10.5281/zenodo.11274790 (Prasianakis et al.,
2024b) upon final publication of Prasianakis et al. (2024a).
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