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Abstract. Transit times and tortuosity for advective particles
following water flow in a three-dimensional discrete fracture
network with high-resolution representation of internal frac-
ture heterogeneity in aperture is investigated using a numeri-
cal model with a stochastic Lagrangian transport framework.
The fracture network properties are obtained from field mea-
surements and data of a deep fractured rock formation in
the Forsmark site in Sweden. Different assumptions for de-
scribing the variance and correlation length used for internal
heterogeneity of fracture aperture fields are considered. It is
shown that cases with strong variance and correlation length
cause earlier first arrivals and delayed late arrivals, thereby
extending the range of the transit time breakthrough distribu-
tion, compared to the assumption of constant fracture aper-
ture. Also, the timing of peak mass arrival is delayed and its
density is reduced. Furthermore, a strong correlation between
transit time and tortuosity which occurs for early and bulk
mass arrival is revealed, which breaks down for late mass
arrival. Thereby two transport regimes are identified, where
a first regime is mainly controlled by the network structure
and exhibits strong correlation with tortuosity, and a second
regime is mainly controlled by the fracture aperture hetero-
geneity and exhibits weak correlation with tortuosity.

1 Introduction

Understanding fluid flow in fractured crystalline rock is im-
portant for a range of geoengineering applications related to
managing waste and unwanted substances from energy pro-
duction, including subsurface geological storage of spent nu-
clear fuel and carbon sequestration (Matter and Kelemen,
2009; Neretnieks, 1993; Randolph and Saar, 2011; Tsang et

al., 2015; Tsang and Niemi, 2013). Central to the study of
fluid flow in fractured rock is the representation of hetero-
geneity exhibited by fractures and fracture networks which
vary at a multitude of scales (Davy et al., 2010; de Dreuzy et
al., 2012; Maillot et al., 2016; Neuman, 2005; Pyrak-Nolte et
al., 1992; Zimmerman and Bodvarsson, 1996). For modelling
sparsely fractured crystalline rock, a common approach is to
assume flow only occurs in fracture surfaces embedded in an
impermeable rock matrix, and therefore the representation
of fractures and their geometrical and hydrological proper-
ties is essential. A stochastic approach is typically employed
where multiple fractures are sampled as planar surfaces, typ-
ically as discs or polygons, following distributions describ-
ing intensity, strike, dip, orientation, length and transmissiv-
ity, which combined form a network of connected fractures
(Cacas et al., 1990; Frampton and Cvetkovic, 2011; Out-
ters, 2003; Selroos et al., 2002; Selroos and Follin, 2014).
Direct measurement of fracture surface roughness and vari-
able aperture is cumbersome and usually involves observa-
tion of trace profiles on rock outcrops (Candela et al., 2009;
Magsipoc et al., 2020). However, effective transmissivity or
permeability of a section of bedrock, consisting of multi-
ple fractures in a network, can be obtained through inverse
modelling of hydraulic pressure tests in boreholes (Follin
and Hartley, 2014; Frampton and Cvetkovic, 2010). There-
fore, numerical discrete fracture network (DFN) models of
sparsely fracture rock often employ an assumption of effec-
tively homogeneous properties at the scale of individual frac-
tures, corresponding to an assumption of effectively constant
aperture in the fracture plane.

However, real-world fractures have rough surfaces and
significant variability in aperture which can impact water
flow and transport of solutes (Brown, 1987; Hakami and Bar-
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ton, 1991). Several studies covering a range of different rock
types indicate fracture surface roughness may follow self-
affine scaling properties (Brown, 1987; Glover et al., 1998;
Houben et al., 2024; Ogilvie et al., 2003; Power and Tullis,
1991; Renard et al., 2006). However, the fracture void space
between adjacent rough surfaces does not necessarily follow
the same scaling behaviour, and observations based on sam-
ple measurements indicate fracture aperture fields may be de-
scribed by normal or lognormal distributions (Hakami, 1995;
Johns et al., 1993; Keller, 1998; Thörn et al., 2015; Thörn and
Fransson, 2015; Watanabe et al., 2008). Although it is known
that internal variability controls flow channelling at the scale
of single fractures (Detwiler and Rajaram, 2007; Johnson et
al., 2006; Liu et al., 2018; Moreno et al., 1988) and generic
networks (Nordqvist et al., 1992), there is still limited under-
standing of effects at the bedrock scale of fractures forming
large scale complex networks. Studies have identified net-
work structure to exert more control on transport than inter-
nal variability in large domains, but the effect also depends
on the assumptions made for describing fracture heterogene-
ity (Frampton et al., 2019; Hyman et al., 2021; Makedonska
et al., 2016). Fracture surface roughness and variable aper-
ture also plays a significant role on mechanical deformations
which greatly influences flow (Kwon and Min, 2021; Watan-
abe et al., 2009). It is therefore highly relevant to understand
how internal fracture aperture heterogeneity impacts water
flow and advective particle transit times in order to make ap-
propriate decisions on how to adequately represent fractures
in discrete fracture network models.

In this study, a model experiment is set up to investigate
the impact of internal fracture aperture heterogeneity on flow
and transport in a model configured according to fracture set
distributions obtained from the Forsmark site investigation
in Sweden. The representation of internal aperture hetero-
geneity is based on an assumption of lognormally distributed
apertures in the fracture plane which is consistent with ob-
servations reported in the literature. Thereby, the aim is to
investigate to what extent the variance and correlation length
of aperture fields used for representing internal fracture vari-
ability impacts flow channelling by advective particle transit
times and tortuosity in a realistic discrete fracture network.
The underlying assumption is that for aperture fields with
small variance and short correlation lengths, the impact of
internal fracture heterogeneity on transit times and pathway
tortuosity is negligible, and a constant effective fracture aper-
ture can be assumed. However, if strong variance and large
correlation lengths are imposed on fractures in the network,
the impact on transit times and tortuosity is not negligible.

2 Method

The procedure employed follows the methodology developed
by Frampton et al. (2019) for investigating transit times in
discrete fracture networks with internal aperture heterogene-

Figure 1. The discrete fracture network model in a 100× 100×
100 m3 domain. (a) Reference case with constant aperture. (b) Case
with large variance and correlation length. (c) Pressure solution for
the reference case. (d) Particle trajectories for the reference case,
only 300 are shown for visibility. Slices through the domain at the
origin with (e) normal in the x direction and (f) normal in the z
direction showing fracture traces.

ity. Here, only Gaussian textures for fracture heterogeneity
are considered, which corresponds to lognormal distributions
for fracture aperture fields. Also, a large-scale DFN realisa-
tion is considered which is based on the well-characterised
Forsmark site in Sweden, using fracture statistical proper-
ties at the depth interval of 200–400 m of the sparsely frac-
tured rock formation FFM01 (Follin et al., 2007). Thus, this
study is based on site-specific properties instead of synthetic
generic properties. Also, impacts on pathway length and tor-
tuosity are investigated. Fractures are represented as two-
dimensional surfaces with assigned aperture within an im-
permeable three-dimensional domain representing the host
bedrock (Fig. 1). Pressure boundary conditions are assigned
to model inflow and outflow boundaries, at x =−50 m and
x = 50 m respectively, yielding steady-state flow through the
fracture network. Particle tracking is then conducted follow-
ing the flow field through the network.

Particle tracking is used to represent transport of wa-
terborne substances, such as solutes and dissolved con-
taminants. A stochastic Lagrangian approach is employed
(Cvetkovic et al., 1998, 1999; Cvetkovic and Dagan, 1994;
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Frampton and Cvetkovic, 2007), where inert particles that
follow the flow field through the DFN represent the advec-
tive and dispersive spreading of a plume through the het-
erogenous domain. The transit travel time τ experienced by
a particle along its trajectory s from source rs to sink rt is

τ =

rt∫
s=rs

1
v (s)

ds (1)

where v is fluid velocity. Pathway tortuosity is then

λ=
1

rt − rs

rt∫
s=rs

ds (2)

where L= rt − rs is a straight-line path through the length
of domain in the net flow direction. For a numerical DFN
model with a discretized mesh, the trajectory can be seen as
a random walk through the fracture network consisting of
N discrete steps along segments i, where each segment has
velocity vi and length ri so that particle transit time becomes

τ =

N∑
i=1

ri

vi
(3)

and pathway tortuosity becomes

λ=
1
L

N∑
i=1

ri (4)

The simulation cases investigated are as follows. First, a ref-
erence case DFN model is generated where fractures have a
constant aperture of 0.1 mm, which corresponds to a perme-
ability of about 8.3× 10−10 m2 using the cubic law (Wither-
spoon et al., 1980; Zimmerman and Yeo, 2000). The DFN is
solved for flow followed by advective particle tracking. Then,
the same geometric DFN is used but where each fracture is
assigned a heterogenous aperture field, which is then solved
for flow and followed by particle tracking. The cases with
heterogeneous aperture fields always have a mean aperture of
0.1 mm, but with different variance and correlation lengths.
Both low variance (0.1) and high variance (0.3) cases are
considered, together with correlation length factors of 0.1,
0.2, 0.5 and 1. The correlation length factors are relative to
the lower truncation limit of the fracture size distribution of
the DFN, which is 5 m in length scale; hence the correspond-
ing correlation lengths are 0.5, 1, 2.5 and 5 m.

Thus, a reference case DFN with constant fractures and
eight cases of the DFN with heterogeneous fractures are
computed, yielding a total of nine flow simulations. Each
flow simulation is injected with about 10 000 particles, which
are uniformly distributed along the fracture transects inter-
secting the inflow boundary plane. The analysis is based on
the transit times and pathway tortuosity experienced by the

Figure 2. Detail of the DFN showing the mesh with internal fracture
variability for the cases with correlation length (a) 0.5 m, (b) 1.0 m,
(c) 2.5 m, and (d) 5.0 m with variance 0.3.

particles as they follow advective water flow through the net-
work from the injection plane at x =−50 m to the outflow
plane at x = 50 m. The dfnWorks computational suite (Hy-
man et al., 2015) is used to generate the fracture network,
solve for flow, and conduct particle tracking.

The DFN model domain is 100× 100× 100 m3 and con-
tains fractures with a length scale from 5 m and larger, fol-
lowing a power-law size distribution (Follin et al., 2007; Ta-
bles 11–20). The mesh resolution is set to constant at 0.5 m,
in order to accurately resolve even the smallest fractures with
a variable permeability field and without incurring excessive
computational cost for the entire DFN. The smallest correla-
tion length corresponds to variability at the mesh scale res-
olution, representing high frequency variability in aperture
with essentially random internal structure. The largest scale
correlation corresponds to the size of the smallest fractures,
thus representing strong internal structure.

The reference case DFN is shown in Fig. 1a, and the case
with large variance and correlation length is shown in Fig. 1b.
The computed pressure field is shown in Fig. 1c, and about
300 particle trajectories are shown in Fig. 1d. The fracture
network is based on site data from a very sparsely fractured
rock formation, which is more clearly visualised by slices
through the domain as shown in Fig. 1e, f. A zoomed de-
tail of a selected part of the DFN depicting the mesh for a
few fractures and fracture intersections with the four cases
of systematically increasing correlation length is shown in
Fig. 2.
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Figure 3. Density distribution of the logarithm of particle transit
times through the domain for the reference case (Corr 0, black)
and increasing correlation length cases 0.1 (dotted cyan), 0.2 (dash-
dotted blue), 0.5 (dotted green), and 1 (dashed red) with (a) variance
case 0.1 and (b) variance case 0.3.

3 Results and discussion

Considering the reference case with constant fracture aper-
ture, the arrival time density distribution for particle transit
times exhibits a distinct peak at around 10−1 yr, and with sev-
eral secondary and higher order modes for later times (Fig. 3,
black). The entire distribution spans about seven orders of
magnitude from first arrival at about 10−2 yr to last arrival at
about 105 yr. The low variance cases have a similar spread in
arrival times as the reference case, despite increasing corre-
lation lengths (Fig. 3a), but the high variance cases can reach
times over 106 yr and hence span over eight orders of mag-
nitude, depending on correlation length (Fig. 2b). Note how-
ever, the density of the first mode (i.e., peak) which occurs
near transit time 10−1 yr is reduced as correlation length in-
creases, slightly for low variance cases from about 1.0 for the
short correlation length case Corr 0.1 (Fig. 3a, dotted cyan)
to about 0.9 for the long correlation length case Corr 1.0
(Fig. 2a, dashed red), but more notably for the high variance
cases from about 1.0 to 0.7, for the same correlation length
cases (Fig. 3b). Thus, the main effect of correlation length is
to reduce the density of particles around the first mode, i.e.,
the peak arrival time. The increased correlation lengths also
alter the timing of the peak, as well as the timing and spread
of the secondary and higher order modes. Furthermore, the
increased correlation lengths generally increase the spread of
transit times, increasing the density of particles for first and
early arrivals, prior to the first mode, as well as the density
of the secondary and higher order modes in the tails of the
distribution.

The differences in arrival time are also apparent by in-
specting the corresponding cumulative density distributions
(Fig. 4). For small variance, the cumulative densities for
increasing correlation lengths are slightly shifted towards
later arrival times (Fig. 4a). The high variance cases exhibit
more distinguished shifts towards later times and with greater
spread as correlation length increases (Fig. 4b). The density
of first arrivals at around 10−2 yr are visibly increased for the
high variance cases (Fig. 4b). Also, the cumulative density of
arrivals is notably shifted towards later times.

Figure 4. Cumulative density distribution of the logarithm of parti-
cle transit times through the domain for the reference case (Corr 0,
black) and increasing correlation length cases 0.1 (dotted cyan), 0.2
(dash-dotted blue), 0.5 (dotted green), and 1 (dashed red) with (a)
variance case 0.1 and (b) variance case 0.3.

Figure 5. Percentiles of the logarithm of particle transit times for
the reference case and the cases with increasing correlation length
factor with (a) variance case 0.1 and (b) variance case 0.3.

The median transit times (0.5 percentile density) are not
significantly affected by correlation length for the low vari-
ance cases (Fig. 5a, blue dots) and exhibit slight increase for
the high variance cases (Fig. 5b, blue dots). However, first
and early arrivals exhibit shorter transit times for both low
and high variance cases, which is mainly evident for the low
percentile densities, below 0.1, corresponding to less than
1 % of the total particles injected. A more significant reduc-
tion in transit time is observed for the 0.001 percentile, cor-
responding to 0.1 % of the total particle mass. Interestingly,
the low variance cases exhibit an approximate linear reduc-
tion in transit times as correlation length increases for small
percentiles, but the high variance cases exhibit a slight rise
for correlation length factors 0.1 and 0.2, before a reduc-
tion in transit time for correlation factors 0.5 and 1.0. Sim-
ilar nonlinear responses to changes in correlation length for
small percentiles of transit times have been observed for syn-
thetic DFN models comprising small networks (Frampton et
al., 2019).

The transit time for the first 1 % particle arrivals (0.01 per-
centile) for the large variance case with maximum correlation
length factor (Corr 1.0) is 0.03 yr, which can be compared
to the constant reference case which is 0.0375 yr (Table 1).
Thus, the relative difference is a 20 % reduction in transit
time for the first 1 % of particle mass arrival for this case
compared to the reference case (Table 2). Similarly, consid-
ering the first 10 % of particle arrivals (0.1 percentile) for
the large variance and maximum correlation case, the rela-
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tive difference is only a 2 % reduction in transit time. How-
ever, considering the first 50 % (0.5 percentile) of particles
arrivals, the relative difference is a 39 % increase in transit
time, and considering 90 % (0.9 percentile) and 99 % (0.99
percentile) of arrivals, the relative increase is a factor of 21
and 53 respectively. Most simulation cases exhibit later ar-
rivals for percentiles above 0.1 and all cases for percentiles
above 0.25. Thus, there is a transition between reduction
(negative relative differences) and increase (positive relative
differences) in transit time which is caused by introducing
fracture aperture heterogeneity, and the transition point de-
pends both on the variance and correlation length of the aper-
ture field employed. For the cases with small variance, all
correlation lengths cause reduced transit time for 1 % parti-
cle density (0.1 percentile) and below. The transition occurs
for greater densities, between 1 % and 10 % for all correla-
tion lengths except the maximum (Corr factor 1.0) which
still exhibits reduced transit time at 10 % density (0.1 per-
centile). For the cases with large variance however, only the
larger correlation lengths (Corr factor 0.5 and 1.0) cause re-
duced transit times for 1 % particle density and below. The
reduction is still seen at the 10 % density for the maximum
correlation length. The precise point of transition for each
correlation length could be obtained by studying additional
percentiles in the range 0.01 and 0.1. Also, as before, a non-
linear behaviour is seen for the changes in transit time as
correlation length increases for the high variance cases (cf.
Fig. 5b) which is not apparent for the low variance cases (cf.
Fig. 5a).

Particle tortuosity is calculated as the ratio of path length
over domain distance (100 m) and quantifies increase in path
length relative to a straight lateral line through the domain,
from the injection plane to the outflow plane. The reference
case exhibits a spread in tortuosity from just above 1 to al-
most 3, with median particle mass (0.5 percentile) exhibiting
a tortuosity just below 1.5 (Fig. 6). Considering the low vari-
ance cases with increasing correlation length (Fig. 6a), tortu-
osity remains relatively constant for the bulk particle mass,
as the median and interquartile range remains essentially un-
changed. The high variance cases exhibit an increase in tortu-
osity, seen by the increase in median and interquartile range
as well as outliers, as correlation length increases (Fig. 6b).
Interestingly, there is an apparent peak in tortuosity for cor-
relation length factors 0.2 and 0.5, seen by the increased tor-
tuosity of the outliers, which reduces slightly for the correla-
tion length factor 1.0 Thus, here also a nonlinear behaviour
is seen as correlation length increases for the high variance
cases only.

Tortuosity is strongly correlated to transit time for the ref-
erence case considering the bulk particle mass, correspond-
ing to first and median arrivals, from about 10−2 to 100 yr
(Fig. 7a). Late arrivals with transit times around 100 yr and
greater, corresponding to higher order modes and the tail of
the distribution, do not exhibit any clear correlation with tor-
tuosity which remains around 1.7 with significant spread.

Figure 6. Boxplots showing the median, interquartile range,
whiskers and outliers of particle pathway tortuosity for the refer-
ence case and the cases with increasing correlation length factor
with (a) variance case 0.1 and (b) variance case 0.3.

The case with largest variance and correlation length factor
exhibits greater spread in both arrival times and tortuosity
(Fig. 7b). The strong correlation for small transit times be-
tween 10−2 to 100 yr is still apparent but with greater spread,
indicating the correlation is weaker. Also, although the parti-
cle density is increased for the higher modes with transit time
above 100 yr, there is no apparent correlation with tortuosity.
Most of the late particles still have a tortuosity around 1.7 but
with more significant spread.

The reference case shows the particle behaviour under
the assumption of constant fracture aperture in the network.
Thus, the tortuosity exhibited by the reference case (Fig. 7a)
is controlled solely by the connectivity between fractures in
the network, is the large scale structure. When internal frac-
ture aperture heterogeneity is employed, tortuosity generally
increases (Fig. 7b) for the bulk particle mass arrivals. Al-
though the late arrivals which exist in the reference case be-
come delayed when considering internal variability, the delay
is not caused by a significant increase in path length. Only a
small increase in path length occurs despite a significant de-
lay in transit time, as seen by the increased spread and scatter
in Fig. 7b. This implies the fracture network is subject to two
transport regimes. A first regime for the bulk particle mass
arrivals which exhibits strong correlation between tortuos-
ity and transit time, indicating path length through the net-
work exhibits relatively strong control over transit time. The
second regime consisting of the tails of the distribution con-
tain very slow pathways, but without a significant increase
or otherwise notable change in path length. Thus, the slow
transport regime is associated with other factors than path
length, such as locally reduced apertures, causing slow flow
and delay in transport. Hence, fracture aperture heterogene-
ity causes an increased density of particles with long transit
time, and acts to reduce the strong correlation with tortuos-
ity in the fast transport regime (illustrated by the dashed red
regression lines in Fig. 7), and simultaneously increases the
weak correlation with tortuosity in the slow transport regime
(dash-dotted blue regression lines in Fig. 7).
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Table 1. Transit times (yr) for different percentile densities.

Percentile densities

Case 0.01 0.1 0.25 0.5 0.75 0.9 0.99

Ref 0.0375 0.0500 0.0639 0.1019 0.3582 5.16 3590

Variance 0.1

Corr 0.1 0.0373 0.0513 0.0670 0.1084 0.3910 6.47 6118
Corr 0.2 0.0371 0.0508 0.0659 0.1079 0.3960 8.39 6223
Corr 0.5 0.0355 0.0498 0.0657 0.1068 0.3732 15.08 14845
Corr 1 0.0342 0.0485 0.0654 0.1093 0.3927 18.49 17595

Variance 0.3

Corr 0.1 0.0386 0.0549 0.0726 0.1191 0.4780 13.12 11300
Corr 0.2 0.0392 0.0561 0.0750 0.1277 0.5703 25.95 16022
Corr 0.5 0.0360 0.0525 0.0735 0.1276 0.7049 96.69 85284
Corr 1 0.0300 0.0491 0.0721 0.1417 0.7112 114.16 194742

Table 2. Relative difference in transit times with respect to reference case (–).

Percentile densities

Case 0.01 0.1 0.25 0.5 0.75 0.9 0.99

Variance 0.1

Corr 0.1 −0.01 0.03 0.05 0.06 0.09 0.25 0.70
Corr 0.2 −0.01 0.02 0.03 0.06 0.11 0.63 0.73
Corr 0.5 −0.05 0.00 0.03 0.05 0.04 1.92 3.13
Corr 1 −0.09 −0.03 0.02 0.07 0.10 2.58 3.90

Variance 0.3

Corr 0.1 0.03 0.10 0.14 0.17 0.33 1.54 2.15
Corr 0.2 0.04 0.12 0.17 0.25 0.59 4.03 3.46
Corr 0.5 −0.04 0.05 0.15 0.25 0.97 17.74 22.75
Corr 1 −0.20 −0.02 0.13 0.39 0.99 21.13 53.24

4 Conclusions

This study investigates effects of internal fracture aperture
heterogeneity on flow and transport by particle transit times
in a discrete fracture network model based on site-specific
bedrock data. The fracture network properties are obtained
from Forsmark in Sweden, which is the planned site for
the construction of the subsurface repository for spent nu-
clear fuel, and the host geological formation consists of very
sparsely fractured crystalline rock. The main control on tran-
sit times is evidently the fracture network, which governs the
overall form of the arrival time distribution and its first mode
(main peak) in transit time and tortuosity. Imposing fracture
aperture heterogeneity changes the timing and density of the
peak transit time such that it is slightly delayed and the den-
sity is reduced. Higher order modes and their transit times are
more significantly influenced by aperture heterogeneity and
their timing are generally delayed. Also, an increase in the

total range of transit times is observed, causing both earlier
first arrivals and delayed late arrivals, corresponding to the
extremes of the distributions, which can prolong the tails of
transit time by orders of magnitude. Both early and late ar-
rivals are important for applications. An increase in early ar-
rivals is important for safety assessment of subsurface repos-
itories, in order to quantify first-incident exposure risks. Late
arrivals are important to understand long-term effects of con-
taminant sources and legacy sites, such as mines and other
subsurface pollutant sources.

Based on the discrete fracture network model and simu-
lation cases considered in this study, the fracture aperture
field with high variance and strong correlation (variance case
0.3, correlation length factor 1.0) can cause the first 1 % of
particle mass to arrive about 20 % earlier than if a constant
fracture aperture field is assumed. Considering the median
density, i.e., 50 % mass, particles can arrive about 40 % later
than expected. The transition between earlier to delayed ar-
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Figure 7. Joint density distribution and correlation between parti-
cle pathway tortuosity and transit time for (a) the reference case
and (b) the case with large variance 0.3 and large correlation length
factor 1.0. The lines in each plot corresponds to a linear regression
for transit times below 100 yr (dashed red), and above 100 yr (dash-
dotted blue).

rivals by introducing fractures with heterogeneous aperture
fields occurs at small percentiles of the arrival time distribu-
tion. For the cases with small variance in the aperture field,
this transition is approximately linear with correlation length,
and occurs between 1 % and 10 % of particle mass. For the
cases with large variance, this transition is not linear and oc-
curs at about 1 % of particle mass for strongest correlation
lengths.

Accounting for internal heterogeneity incurs an additional
computation cost because a higher resolution mesh is needed
to resolve the fractures in the network. However, the effects
on particle transit times can in principle be obtained from
simulations with constant aperture or permeability by ad-
justing the densities of early and late arrivals by a certain
amount in a post-processing stage. The amount that needs
adjusting will likely depend on both fracture and network
properties, but can be estimated from a limited set of sim-
ulations where variable aperture is accounted for. For this
discrete fracture network, assuming the strongest variance
and correlation length case correspond to a worst-case sce-
nario, conservative estimates of first-incident exposure risk
can still be obtained from the constant aperture transit time
distribution by allowing the first 1 % of mass to arrive 20 %
earlier. Although these specific changes in density on the
travel time distribution cannot be generalised to other sites
with different rock formations and fracture network proper-
ties, it seems plausible that internal fracture variability will
have some non-negligible impact on early and late arrivals.
The effect is likely a balance between the strength of the in-
ternal fracture correlation structures and the overall network
structure. This highlights the need for further measurements
and analysis of internal fracture variability using rock sam-
ples and in situ observations.

The effects of internal fracture aperture heterogeneity are
also evident by its impacts on particle path lengths and tor-
tuosity. When internal aperture heterogeneity is considered,
path length and tortuosity is increased. The increase occurs
for all transit times. Based on analysis of correlation between
tortuosity and transit time, two transport regimes are identi-
fied for this fracture network. The first regime corresponds
to the bulk particle mass with short transit times and exhibits
strong correlation with tortuosity. The second corresponds to
long transit times and exhibits weak correlation with tortuos-
ity. Fracture aperture heterogeneity causes an increased den-
sity of particles with long transit time and further weakens
the correlation with tortuosity, indicating path length is not a
significant contributing factor for late arrivals. Instead, frac-
ture aperture heterogeneity which slows down flow velocity
locally plays a more significant role on controlling late time
arrivals in the tails of the transit time distribution.

Code and data availability. The software used to conduct the nu-
merical simulations is described in Hyman et al. (2015), and
is available at https://dfnworks.lanl.gov and https://github.com/
lanl/dfnWorks (lanl, 2024). The data generated by the nu-
merical simulations is available in the Zenodo repository at
https://doi.org/10.5281/zenodo.12551791 (Frampton, 2024).
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