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Abstract. In groundwater resource management, the hydro-
geological framework significantly influences groundwater
flow and storage. The complexity of groundwater systems in
orogenic regions necessitates comprehensive investigations.
To ensure sustainable groundwater management and address
global climate change impacts, hydrogeological surveys and
long-term monitoring at the catchment scale are essential.
However, regional surveys are often limited by budget con-
straints and field accessibility. Therefore, integrating remote
sensing and GIS technology to analyze terrain features, com-
bined with field test results, facilitates the establishment of
comprehensive terrain classifications and groundwater po-
tential maps, aiding subsequent groundwater resource inves-
tigations and management. This study collected data from 75
field investigation sites spanning the mountainous to plain
regions of central Taiwan at the catchment scale. The data
included regolith thickness, hydraulic parameters, and nearly
ten years of groundwater level observations. Terrain classifi-
cations were based on indices such as the topographic wet-
ness index, topographic position index, and slope degree, re-
sulting in seven distinct terrain types. The results revealed
that in main riverbed deposits and flat slopes, there were
higher average well yields and groundwater-level fluctua-
tions. Greater fluctuations were observed in areas charac-
terized by ridges, colluvium, and low elevation in slope ar-
eas and valleys. The variability in shallow aquifers was par-
ticularly pronounced, with outliers reaching higher levels in
slope and valley terrains. These findings underscore the com-
plexity of groundwater dynamics in diverse terrain types,
highlighting the need for tailored management strategies to
ensure sustainable groundwater resources.

1 Introduction

Groundwater flow is inherently complex, forming local, in-
termediate, and regional flow systems influenced by vari-
ous factors. Topographic terrain plays a crucial role in shap-
ing these flow systems (Henriksen, 1995; Grinevskii, 2014;
Dai et al., 2021). In bedrock regions, groundwater flow is
primarily controlled by the hydrogeological framework and
fracture networks (Chou et al., 2014; Chandra et al., 2019).
Conducting field investigations for groundwater exploration
is often prohibitively expensive, necessitating cost-effective
methods. Integrating remote sensing and GIS techniques of-
fers a viable solution for exploring groundwater resources
efficiently. Terrain analysis, in particular, has become a glob-
ally recognized application in this context (Lin and Liou,
2020; Derdour et al., 2022). This study focuses on evalu-
ating terrain-based groundwater potential and establishing
long-term groundwater monitoring systems at the catchment
scale in central Taiwan (Fig. 1). Unlike previous studies,
it integrates terrain analysis with continuous groundwater
level monitoring, providing a comprehensive understand-
ing of groundwater dynamics. By combining terrain analy-
sis with extensive field investigation data, including regolith
thickness, hydraulic parameters, and groundwater level ob-
servations over nearly a decade, we aim to develop detailed
groundwater potential maps and terrain classifications. The
integration of remote sensing and GIS technology allows for
a comprehensive assessment of the hydrogeological frame-
work, aiding in the sustainable management of groundwa-
ter resources. Our methodology utilizes indices such as the
topographic wetness index (TWI), topographic position in-
dex (TPI), and slope analysis for terrain classification. Addi-
tionally, we incorporate soil moisture index and soil moisture
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Figure 1. Topography and geology of the study area and locations of drilling sites and pumping tests for regolith and well yield data.

content derived from remote sensing data to assess ground-
water recharge potential. This integrated approach yields
valuable insights into the relationship between terrain char-
acteristics and groundwater potential (Fig. 2), crucial for
addressing the challenges posed by global climate change
and ensuring the long-term sustainability of groundwater re-
sources.

2 Methodology
2.1 Terrain GIS Analysis

Terrain analysis utilized natural breaks to classify TWI, TPI,
and slope degree (SD) into five classes, derived from a
30m x 30m digital elevation model using ArcGIS Raster
Calculator. These indices facilitated the classification of the
landscape into terrain types (Table 1 and Fig. 2). Addition-
ally, colluvium was identified through drilling or landslide
features detected by field surveys and remote sensing im-

agery.
2.2 Remote Sensing Analysis

Remote sensing involved obtaining soil moisture indices
from Landsat imagery (Toby, 2007) and soil moisture con-

Adyv. Geosci., 64, 13-17, 2024

tent using the apparent thermal inertia (ATI) approach with
Moderate Resolution Imaging Spectroradiometer (MODIS)
imagery for analysis (Chang et al., 2012). These indices pro-
vided spatial and temporal information on soil moisture in
remote areas.

2.3 Correlation Analysis

Field data from 75 groundwater wells, encompassing mea-
surements of regolith thickness, hydraulic parameters, and
observations of shallow and deep water tables (since 2010),
were integrated with terrain analysis. Statistical analyses
were performed to examine the correlation between terrain
characteristics, soil moisture, and groundwater level fluctua-
tions.

3 Findings

The results showed that regolith thickness ranged from 0.5
to 80.8 m (Fig. 2), varying by terrain type. Although average
water tables are similar in shallow and deep wells, fluctua-
tions ranged from 2.04 to 39.71 m in shallow wells and 1.64
to 29.62m in deep wells (Fig. 3). The greater variability in
shallow wells suggests higher sensitivity to influences such
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Figure 2. Terrain classification samples and corresponding hydrogeological investigation results in the study area.
Table 1. Terrain classification and literature.
Terrain classification in this study Definition Henriksen (1995)
1. Ridge of (1) Atridge (Rg) TPI > 28 Ridges and hills (R)
watershed
2. Slope area (2) Steep slope above 32° (Ss) Class 1 and 2 of SD Valley slopes (Vs)
(3) Flat slope under 32° (Sf) Class 3 and 4 of SD
3. Valley and (4) Valley or Creek bottom (Vb) Class 3 and 4 of SD, and Class 4 of TWI  Valley bottoms (Vb)

(5) Alluvial fan of downstream the val-
ley (Vbf)

(6) Main riverbed deposit and terrace
(Vm)

alluvial fan

Class 3 and 4 of SD, and Class 4 of TWI

Class 5 of SD, and Class 5 of TWI

Fjord slopes (Fs)/Flatland (F)

4. Landslide (7) Colluvium (Co)

Detected by field survey or remote sens-
ing

as regolith distribution and recharge dynamics, whereas deep
wells display more stable conditions due to lower permeabil-
ity. Higher average well yields and groundwater fluctuations
were notably observed in main riverbed deposits (Vm) and
flat slopes (Sf) compared to soil moisture and hydraulic pa-
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rameters, as shown in Fig. 3e and f. These findings highlight
the terrain-based groundwater potential and the critical role
of groundwater-level fluctuations in groundwater dynamics.
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Figure 3. Long-term groundwater-level monitoring (since 2010) and hydraulic parameters for each terrain. (a) Average water table depth in
shallow wells. (b) Average water table depth in deep wells. (c) Water table fluctuation in shallow wells. (d) Water table fluctuation in deep

wells. (e) Storativity. (f) Transmissivity.

4 Conclusions

Our study emphasizes the critical role of terrain-based as-
sessments in comprehending groundwater dynamics in cen-
tral Taiwan. Specifically, flat slopes demonstrate elevated
well yield potential alongside fluctuations in storativity and
transmissivity, indicating substantial recharge and discharge
potential. This underscores the intricate nature of groundwa-
ter processes across diverse terrains. Our integrated method-
ology, amalgamating terrain analysis with field investigations
and remote sensing, furnishes invaluable insights for ground-
water management. Future work can incorporate more re-
mote sensing indices by downscaling or upscaling them to
the same spatial resolution as the terrain. Continued moni-
toring and refinement of strategies are crucial for sustaining
groundwater resources amidst changing environmental con-
ditions.

Code availability. The mapping and analysis for this study were
performed using Python and ArcGIS software. The specific Python
libraries and GIS tools used include: pandas (for data manipulation),
numpy (for numerical analysis), matplotlib (for plotting), geopan-
das (for spatial data manipulation), rasterio (for handling raster
data), and ArcGIS (for advanced spatial analysis and mapping).
These tools are widely available and can be accessed through their
respective official websites: Python: https://www.python.org/ (last
access: 24 July 2024), ArcGIS: https://www.esri.com/en-us/arcgis/
about-arcgis/overview (last access: 24 July 2024).
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Data availability. The underlying research data for this study is
publicly accessible and can be found in the following repository:
https://hydro.geologycloud.tw/map (Geological Survey and Min-
ing Management Agency, Ministry of Economic Affairs (GSMMA,
MOEA), 2024).
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