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Abstract. Persistent Scatterers Interferometric Synthetic
Aperture Radar (PS-InSAR) is an advanced satellite remote
sensing technique which allows an effective monitoring of
ground movement. In this work, PS-InSAR time series as
well as precipitation and temperature time series in a re-
gion in Catania, Italy are utilized during 2018–2022, and
their possible interconnections with land subsidence/uplift
due to groundwater level change are investigated. First, the
potential jumps in the displacement time series are removed,
and then the Sequential Turning Point Detection (STPD) is
applied to estimate the times when the velocity of the dis-
placement time series changes. The results show a signifi-
cant correlation between the frequency of turning points in
displacement time series and precipitation trend change, par-
ticularly during the winter season. Furthermore, the Least-
Squares Cross Wavelet Analysis (LSCWA) is applied to es-
timate the coherency and phase delay between the displace-
ment and weather cycles in the time-frequency domain. The
annual cycles of displacement and temperature show more
coherency than the ones of displacement and precipitation
across the study region. The results presented herein are im-
portant for infrastructure and water management planning.

1 Introduction

Rising and declining precipitation over time can poten-
tially increase and decrease groundwater level, respectively
(Jasechko et al., 2024). Excessive groundwater extraction
during hot and dry seasons for various purposes, such as
agriculture and industry, can result in seawater intrusion,
streamflow reduction, and land subsidence (Jasechko et al.,
2024). On the other hand, land uplift may be due to ris-
ing groundwater level as the result of increase in precipita-
tions and reduction in groundwater pumping (Ghaderpour et
al., 2024a). Catania plain, the widest alluvial plain in Sicily,
has experienced land subsidence due to natural and anthro-
pogenic causes, such as tectonic and volcanic activity, sed-
iment compaction, fluid withdrawal, and dams (Anzidei et
al., 2021). This plain has been studied by many researchers,
especially from the structural and hydrogeological points of
view (Spampinato et al., 2013; Guastaldi et al., 2014). Euro-
pean Ground Motion Service (EGMS) has recently provided
PS-InSAR data derived from Sentinel-1 satellites for ground
deformation monitoring across Europe with millimeter preci-
sion (Costantini et al., 2021). In the present study, trends, and
seasonal components in PS-InSAR time series covering the
plain are estimated and their potential interconnection with
precipitation and temperature are investigated.
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Figure 1. (a) Location of the study region, (b) the amplitude map of annual cycles in PS-InSAR vertical time series, (c, d) the velocity maps
before and after removing the jump at the end of 2018, respectively. The maps are produced by QGIS (from © Google Maps 2015).

2 Materials and Methods

2.1 Study region

The study region is part of Catania plain, located in south-
east of Sicily (Italy), Fig. 1. The region includes Catania in-
ternational airport, industrial areas, villages, and agricultural
lands. Improper water management had a negative impact on
groundwater in the last decades, resulting in seawater intru-
sion and aquifers salinization (Guastaldi et al., 2014). The
Ionian Sea is on the east side of the region. From a geo-
logical point of view, this region is located between Mount
Etna and the Hyblean foreland, where alluvial clastic de-
posits crop out (Lentini, 1982). These deposits mainly lie on
a thick sequence of Pleistocene marine marly clays, which
are also part of the sedimentary basement of Mount Etna.

2.2 Datasets

The vertical displacement time series with a sampling rate
of 6 d for period 2018–2022 and at a spatial resolution of
100 m from the EGMS Level 3 Ortho Product (https://egms.
land.copernicus.eu/, last access: 20 March 2024) are utilized
herein, derived from ascending and descending PS-InSAR
time series and information of Global Navigation Satellite
Systems (GNSS). The daily precipitation and temperature
time series at Fontarossa, near the center of the study re-
gion, are downloaded from https://www.3bmeteo.com/ (last
access: 20 March 2024). For visualization purposes, the tem-

perature (average) and precipitation (cumulative) time series
are resampled to 6 d intervals to match the sampling rate of
displacement time series. For the STPD and frequency bar
chart, the displacement time series are monthly resampled
using the spline interpolation method, and monthly accumu-
lated precipitation time series are also calculated (Ghader-
pour et al., 2024a, b).

2.3 Methods

2.3.1 Jumps Upon Spectrum and Trend (JUST)

JUST is a robust method of detecting abrupt changes (jumps)
in the time series. Its special case, implemented herein, uses
the Ordinary Least-Squares (OLS) by a sequential least-
squares fitting of a linear trend with two pieces within a trans-
lating window (Ghaderpour, 2021b).

2.3.2 Sequential Turning Point Detection (STPD)

STPD is developed for detecting trend Turning Points (TPs)
in a time series. A TP is the location where the gradient
of connected linear pieces, fitting the time series, changes
with the assumption that no significant abrupt change exists.
STPD is like the special case of JUST, but a linear trend
with two connected pieces is sequentially fitted to the time
series segments. Like JUST, the criterion for selecting a po-
tential TP is minimizing the residual norm (Ghaderpour et
al., 2024b).
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Figure 2. (a) Velocity of a time series before and after jump removal, (b) STPD result of a time series showing two TPs, (c) JUST result
of precipitation showing 4 significant changes, (d) frequency bar chart for the set of all the time series whose locations are shown in Fig. 1.
Note that the original and corrected segments before 2019 are the same in panel (a).

2.3.3 Least-Squares Cross Wavelet Analysis (LSCWA)

LSCWA decomposes time series into the time-frequency do-
main to estimate a cross-spectrogram (Ghaderpour et al.,
2018). A spectrogram for each time series is estimated by
fitting trend and sinusoidal functions to each segment within
a translating window whose size is inversely proportional
to frequency. Two spectrograms for the two time series are
then cross-multiplied to obtain a cross-spectrogram which
shows how much the periodic/aperiodic cycles of the two
time series are coherent. LSCWA also provides phase de-
lay information for cyclic components of the time series.
The phase delay is usually depicted by white arrows on the
cross-spectrograms, following the trigonometric principle.
LSCWA is a tool in the LSWAVE software (Ghaderpour and
Pagiatakis, 2019).

3 Results

3.1 Velocity Estimation Before and After Jump
Removal

From implementing JUST, it is found that there is a jump
with a significant magnitude at the end of 2018 for many of
the time series across the region, likely due to the earthquake
occurred on 26 December 2018 (Alparone et al., 2022). Pan-
els (c) and (d) in Fig. 1 respectively show the velocity maps
before and after correcting the jump at the end of 2018, where
the results of Point A are illustrated in Fig. 2a. This highlights

the criticality of properly detecting and removing jumps be-
fore velocity estimation.

3.2 Turning Points and Jumps

Those time series with a significant jump at the end of 2018
are first corrected, then STPD is applied to all monthly re-
sampled time series, including the corrected ones. An ex-
ample of a time series with two TPs is depicted in Fig. 2b,
where Point B is highlighted in Fig. 1c. Figure 2d shows the
frequency bar chart of TPs for all the time series across the
study region, where each bar shows the number of all the es-
timated TPs at a given calendar month. Due to extreme pre-
cipitation events, the accumulated precipitation time series
exhibits significant jumps, so JUST is applied to estimate the
dates when the precipitation trend has changed, considering
the jumps (Fig. 2c). Note that the red points in Fig. 2c show
the jumps (not TPs) in the accumulated time series due to ex-
treme precipitation events, allowing the linear trend pieces to
fit better the segments.

3.3 LSCWA

Figure 1b shows the amplitude map of annual cycles in
the displacement time series, estimated by the least-squares
spectral analysis (Ghaderpour, 2021b). LSCWA is then ap-
plied to the displacement and weather time series to further
investigate the potential cause of annual and seasonal cycles
in the displacement time series within the study region. One
time series example corresponding to Point C in Fig. 1c is
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Figure 3. The LSCWA results for Point C near Centrale Elettrica Solare, displayed in Fig. 1c.

demonstrated in Fig. 3. The annual cycles in the displace-
ment and temperature time series are relatively much more
coherent than the ones in the displacement and precipitation
time series across the study region, particularly for the red-
dish areas in Fig. 1b and Point C shown here; see the red-
dish horizontal peaks at 1 cycle/year in Fig. 3a and com-
pare it with Fig. 3b. In Fig. 3, arrows pointing to the east
and west indicate in-phase and out-of-phase, respectively.
Arrows pointing to the north and south mean the weather cy-
cle lag and lead the displacement cycle, respectively. Spectral
peaks inside the black contour lines are statistically signifi-
cant at 95 % confidence level.

4 Discussion and conclusions

Herein, ground deformation in Catania plain is studied us-
ing the tools in LSWAVE software applied to EGMS and
weather data. From Fig. 2d, relatively higher numbers of TPs
are observed during the winter. Many of these TPs have a
positive direction, meaning that the subsidence rate has been
decreased and in some cases land uplift is even observed.
Interestingly, the jumps detected during the fall season, as
shown in Fig. 2c, indicate that heavy precipitation could have
played a role in the land uplift, although this aspect deserves
further investigation focused on the hydrogeological setting
of the study area. Moreover, tectonic dynamics must be con-
sidered since literature reports the presence of fault segments
crossing the region (Ferrara and Pappalardo, 2004). The an-
nual cycle of the displacement time series was almost out-
of-phase with the annual cycles of temperature and precipi-
tation in some areas, including the Centrale Elettrica Solare.
This may be interpreted as relatively more land subsidence
during the hot season and more land uplift during the cool
season. This may also be partially due to thermal expan-
sion and contraction of metal structures and solar power sys-

tems (Ghaderpour, 2021a). Moreover, the delay of about five
months between annual cycles of precipitation and displace-
ment time series could be due either to a delay between sur-
face water and groundwater interaction, or to the groundwa-
ter travel time between the infiltration point and the aquifer
existing within the study area. Land cover response to cli-
mate change could also be another contributing factor to the
seasonal cycles of displacement time series as sensed from
space (Ghaderpour et al., 2023). Historical groundwater level
data for Catania plain are limited, but their analyses and cor-
relation with climate and ground deformation are subjects to
future studies.

Code availability. The software is publicly available online
at https://github.com/Ghaderpour/LSWAVE-SignalProcessing
(Ghaderpour, 2021; Ghaderpour and Pagiatakis, 2019).

Data availability. The Sentinel-1 based PS-InSAR time
series utilized in this study are publicly available at
https://doi.org/10.2909/943e9cbb-f8ef-4378-966c-63eb761016a9
(European Environment Agency, 2023). The weather data are also
available at https://3bmeteo.com (3BMeteo S.r.l, 2024).
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