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Abstract. This study evaluates subseasonal to seasonal
scale (S2S) forecasts of meteorological variables relevant
for the renewable energy (RE) sector of India from six
ocean-atmosphere coupled models: ECMWF SEAS5, DWD
GCFS 2.0, Météo-France’s System 6, NCEP CFSv2, UKMO
GloSea5 GC2-LI, and CMCC SPS3. The variables include
10 m wind speed, incoming solar radiation, 2 m temperature,
and 2 m relative humidity because they are critical for es-
timating the supply and demand of renewable energy. The
study is conducted over seven homogenous regions of India
for 1994–2016. The target months are April and May when
the electricity demand is the highest and June–September
when the renewable resources outstrip the demand. The eval-
uation is done by comparing the forecasts at 1, 2, 3, 4, and
5-months lead-times with the ERA5 reanalysis spatially av-
eraged over each region. The fair continuous ranked proba-
bility skill score (FCRPSS) is used to quantitatively assess
the forecast skill. Results show that incoming surface solar
radiation predictions are the best, while 2 m relative humid-
ity is the worst. Overall SEAS5 is the best performing model
for all variables, for all target months in all regions at all lead
times while GCFS 2.0 performs the worst. Predictability is
higher over the southern regions of the country compared to
the north and north-eastern parts. Overall, the quality of the
raw S2S forecasts from numerical models over India are not
good. These forecasts require calibration for further skill im-
provement before being deployed for applications in the RE
sector.

1 Introduction

The subseasonal to seasonal scale, also known as the S2S
scale, with lead times extending from two weeks to a season
(Vitart et al., 2017), is a new frontier in operational weather
and climate prediction. S2S predictions can be beneficial in
providing early warnings of extreme weather events and can
aid in managing energy, agricultural, and hydrological re-
sources (White et al., 2017). With most countries moving
away from fossil fuels, renewable energy (RE) now accounts
for 29 % of the global electricity generation (IEA, 2021). Un-
like fossil fuels, RE resources are intermittent due to weather
variability (Pechlivanidis et al., 2019). Forecasts can help the
RE industry manage the intermittency. For example, wind
speed and incoming solar radiation forecasts can help esti-
mate future RE generation while temperature and humidity
forecasts can help estimate future electricity demand. Fore-
casts of these variables at S2S scale are particularly important
for RE producers, grid operators and energy traders for op-
erations and maintenance scheduling, strategic planning and
making investment decisions (Orlov et al., 2020).

Recognizing the value of S2S forecasts, many agencies
provide operational S2S forecasts in the public domain.
However, only a few studies focus on the assessment of S2S
forecasts of RE variables obtained from numerical models.
Lynch et al. (2014) analyzed weekly mean wind speeds over
Europe from ECMWF 32 d forecast model and found evi-
dence of skill beyond the medium range time scale. Mar-
cos et al. (2018) characterized the global distribution of 10 m
wind speeds forecasts from ECMWF System 4 with respect
to ERA-Interim reanalysis in terms of mean, standard de-
viation, skewness, kurtosis, goodness-of-fit. They concluded
that although the forecast could approximately represent the
pattern of the mean and standard deviation of the reanalysis,
it could not correctly replicate the patterns of the other mo-
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ments. De Felice et al. (2019) transformed incoming solar
radiation forecasts from ECMWF System 4 to forecasts of
solar photovoltaic (PV) power potential over Europe. They
found that the transformed forecasts showed some skill in
predicting above and below normal PV power potential in
certain European regions. Bell and Kirtman (2019) devel-
oped a grand multimodel ensemble (GMME) for forecast-
ing 10 m wind speeds over the North Atlantic Ocean during
the winter season. They found that eliminating some models
helped to improve the GMME forecast skill. Prodhomme et
al. (2021) investigated the ability of ECMWF SEAS5 model
to predict seasonal summer heatwaves over Europe and dis-
covered that the model performed better at grid-point level
rather than at a regional level. In order to further improve
the forecast quality by adjusting systematic errors (Doblas-
Reyes et al., 2013), these raw forecasts undergo calibration.
Calibrated forecasts of RE variables thus help to provide a
better estimate of energy demand, wind, and solar energy
production (Lledó et al., 2019; Soret et al., 2019; Bloomfield
et al., 2021). These limited studies show that S2S forecasts
have the potential to be exploited for RE applications.

Presently India is experiencing a remarkable growth in
the RE sector. As of February 2021, India’s RE capacity is
92.97 GW (MNRE, 2021). The Government of India plans
to reach 227 GW of RE capacity by 2022 (PIB, 2019). High-
quality S2S forecasts for the RE sector can play a significant
role in aiding this growth. In spite of their availability, S2S
forecast performance for RE variables has not been rigor-
ously evaluated over India. Therefore, the objective of this
study is to assess the performance of S2S forecasts of 10 m
wind speed (WS10 m), incoming shortwave radiation at sur-
face (SSW), 2 m temperature (T2 m), and 2 m relative humid-
ity (RH2 m) from 6 ocean-atmosphere coupled models over
India.

2 Materials and methods

2.1 Forecast models

Monthly mean forecasts from six ocean-atmosphere coupled
models are used in this study. The models are ECMWF
SEAS5 (Johnson et al., 2019), DWD GCFS 2.0 (Fröh-
lich et al., 2021), Météo-France’s System 6 (MF-6; Meteo-
France, 2017), NCEP CFSv2 (Saha et al., 2014), UKMO
GloSea5-GC2-LI (GS5-GC2-LI; MacLachlan et al., 2014),
and CMCC SPS3 (Sanna et al., 2017). The forecasts are
available on the C3S Climate Data Store (CDS, 2021). For
brevity, only a brief summary of the models are provided in
Table 1. Detailed information is available in the references
cited above.

The models are run over a global domain with a 1◦× 1◦

resolution. The ensemble members of SEAS5, GCFS 2.0,
SPS3 are initialized in a burst mode, whereas MF-6, CFSv2,
and GloSea5-GC2-LI are initialized in a lagged mode. In

Figure 1. Homogenous regions of India.

burst mode, all ensemble members are initialized at the same
time with slightly varying initial conditions, whereas, in a
lagged mode, the ensemble members are initialized at differ-
ent times (Vitart and Takaya, 2021). But the monthly datasets
in Climate Data Store are encoded such that all the mem-
bers in lagged mode are initialized on the 1st of every month.
Based on this, the initialization time of every target month in
this study is mentioned in Table 2.

2.2 Study area and period

The forecast models are evaluated over the seven homoge-
nous regions of India (Fig. 1). They are western Himalayas
(WH), north west (NW), north central (NC), north east (NE),
interior peninsula (IP), west coast (WC), and east coast (EC).
The regions are demarcated based on climate, geography, and
topography (Kothawale and Rupa Kumar, 2005). The study
period spans from 1994 to 2016, which is the common hind-
cast period of all the models. The study is conducted over
two interesting time periods: (i) summer months of April,
May when the electricity demand is high (POSOCO, 2016),
and (ii) monsoon months of June, July, August, and Septem-
ber when the supply of renewable resources is higher than
the demand (Dunning et al., 2015).

2.3 Observations

ERA5 reanalysis (Hersbach et al., 2020) is used as the ob-
servational reference. This latest reanalysis dataset produced
by ECMWF has replaced ERA-Interim and spans from 1950
to the present. Similar to the forecasts, the reanalysis is also
retrieved from C3S Climate Data Store. ERA5 is produced
using 4D-Var data assimilation in IFS Cycle41r2. The high
resolution hourly dataset has a 31 km horizontal resolution
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Table 1. Summary of forecast models.

Model name Atmospheric model Ocean model Hindcast initialized on Hindcast ensemble size

ECMWF SEAS5 IFS Cycle 43r1 NEMO v3.4 1st of every month 25 members

DWD GCFS 2.0 ECHAM 6.3.04 MPIOM 1.6.3 1st of every month 30 members

MÉTÉO-FRANCE
SYSTEM 6

ARPEGE v6.2 NEMO v3.4 Penultimate Thursday of previous month
Last Thursday of previous month
1st of month

12 members
12 members
1 member

NCEP CFSv2 NCEP GFS GFDL MOM4 Every 5 d 4 members per day

UKMO
GloSea5-GC2-LI

Met Office Unified
Model

NEMO v3.4 1st, 9th, 17th, 25th of month 7 members per start time

CMCC SPS3 CAM 5.3 NEMO v3.4 1st of every month 40 members

Table 2. Initialization times for different target months.

Month Forecast initialized on

LEAD 1 LEAD 2 LEAD 3 LEAD 4 LEAD 5

April 1 March 1 February 1 January 1 December
(previous year)

1 November
(previous year)

May 1 April 1 March 1 February 1 January 1 December
(previous year)

June 1 May 1 April 1 March 1 February 1 January

July 1 June 1 May 1 April 1 March 1 February

August 1 July 1 June 1 May 1 April 1 March

September 1 August 1 July 1 June 1 May 1 April

and 137 vertical levels up to 0.01 hPa. We perform bilinear
interpolation on the reanalysis to bring it to the same 1◦× 1◦

resolution as the forecasts. The 2 m relative humidity is cal-
culated from 2 m temperature and 2 m dew point tempera-
ture using an improved Magnus formula (Alduchov and Eck-
sridge, 1996). Both the forecasts and reanalysis are extracted
over each homogenous region and then spatially averaged.
We use these extracted values to calculate the verification
metric.

2.4 Verification metric

Continuous ranked probability skill score (CRPSS; Wilks,
2019) is used as the measure of forecast skill. It is a prob-
abilistic skill score that measures the difference between ob-
served and predicted cumulative distributions with respect to
climatology. But the CRPSS can give unfair results when
comparing forecasts from different models with a different
number of ensemble members. Therefore, the fair version of
CRPSS (Ferro et al., 2008), known as FCRPSS, is used as
the unbiased measure of probabilistic forecast skill. The cli-
matology of the variables for each region is obtained from

ERA5. The FCRPSS is calculated for each variable, model,
target month, region, and lead time using the SpecsVerifica-
tion package in R (Siegert, 2020). FCRPSS= 1 indicates that
the forecasts are perfect, FCRPSS= 0 suggests that the fore-
cast skill is the same as climatology, and FCRPSS < 0 means
that the forecasts are worse than climatology. A forecast is
considered skilful if the FCRPSS is greater than 0.

3 Results

Our forecast dataset has 4 variables, 6 models, 6 target
months, 7 regions, and 5 lead times giving a total of 5040
combinations. The forecasts are evaluated for each of these
5 parameters. Out of the 5040 forecasts, only 1302, that is
25.8 % of the total, are skilful. Figure 2 shows the distribu-
tion of FCRPSS values. The FCRPSS values in the x-axis
are separated into bins of width 0.1, and the y-axis displays
the number of forecasts for each bin. Most of the skilful val-
ues are in the range 0.1 to 0.4, with only a few greater than
0.4. This suggests that even though some of the predictions
possess a certain degree of skill, they are far from perfect.
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Figure 2. Bar plot showing the distribution of all 5040 FCRPSS
values. FCRPSS values are in the range [−106.38, 0.63]. Inset bar
plot shows the distribution of only the 1302 forecasts that are skilful
with FCRPSS > 0.

Given the 5 different parameters that are used in this study,
a combination of smaller subset of these parameters will re-
sult in different number of forecasts. Table 3 shows the num-
ber of forecasts that result when a combination of any 2 pa-
rameters out of total 5 are chosen for analysis.

Figure 3 depicts the performance of forecasts for the four
variables in different models, regions, target months, and lead
times. Figure 3a shows that SEAS5 is the best performing
model while GCFS2.0 is the worst. Performance for all vari-
ables is the best in SEAS5. Forecast skill for T2 m and WS10 m
are the worst in GCFS 2.0 whereas, SSW and RH2 m skill are
worst in GS5-GC2-LI. SSW is the best predicted variable and
RH2 m is the worst. Figure 3b shows that forecast skill for
T2 m is better in the summer but worse in the monsoon. The
reverse is true for WS10 m, SSW, and RH2 m. Figure 3c shows
that predictability over three southern regions (IP, WC, EC)
is very high, but it is pretty low over WH except for SSW.
Finally, Fig. 3d indicates that RH2 m show a sharp decline in
forecast skill with increasing lead time but the skills for other
variables remain more or less the same.

Figure 4 displays the forecast performance for the models
in different target months, regions, and lead times. Figure 4a
shows that SEAS5 performs the best at all the target months,
while GCFS 2.0 and GS5-GC2-LI perform the worst. From
Fig. 4b, SEAS5 shows the highest skill over all the regions.
Furthermore, most models show greater skill over IP, WC,
and EC than over WH, NW, NC, and NE. Figure 4c reveals
that SEAS5 performance stands apart from the rest at all
lead times. Forecast performance remains more or less sim-
ilar across lead times except for CFSv2 that shows reduced
skill with increased lead time. Interestingly, MF-6 shows the
lowest skill at 1-month lead time.

Figure 5 shows the forecast performance for target months
in different regions and lead times. Figure 5a shows that the
predictability over the southern regions (IP, WC, EC) is high
at all the target months as also evident in Fig. 4b. WH and NE
have a poor predictability, except during June when the fore-

cast skills are comparable with other regions. From Fig. 5b, it
can be seen that forecast skills for April–June show a declin-
ing trend with increasing lead time whereas skills for July–
September show a peak at 2–3 month lead times.

Figure 6 demonstrates the forecast performance for ho-
mogenous regions at different lead times. It shows that the
predictability over the northern regions (WH, NW, NC, NE)
is highest at lead time 1, whereas over the southern regions
(IP, WC, EC), the predictability at lead time 2 is higher.

4 Conclusions and discussions

This study evaluates forecast skills of 4 meteorological vari-
ables relevant for the RE sector from 6 ocean-atmosphere
coupled models over 7 homogenous regions of India using
FCRPSS. The key conclusions of this study are:

– Overall forecast performance in the S2S scale over In-
dia is poor. FCRPSS values for all parameters combined
rarely exceed 0.4.

– Forecast performance for SSW is the best, while that for
RH2 m is the worst.

– SEAS5 is the best performing model for all variables for
all target months in all regions for all lead times. GCFS
2.0 performs the worst.

– September has the highest number of skilful forecasts
while May has the least.

– The predictability is higher over the southern regions
of the country compared to the north and north-eastern
parts.

– Predictability does not appreciably change with lead
time except for RH2 m where predictability degrades
with increasing lead time.

Because of the large number of parameters involved, it is
challenging to find causal relationships to explain each and
every signal. Nonetheless, we can speculate on some inter-
esting patterns. For example, forecast performance for SSW,
WS10 m and RH2 m is better in the monsoon season. This indi-
cates that the models are able to simulate the synoptic scale
features associated with the monsoons better than the finer
scale convective phenomena that govern the pre-monsoon
meteorology over India. Perhaps improving the resolution of
the models or their subgird parameterization may lead to im-
provement in the pre-monsoon forecasts.

Regional drivers play an important role in forecast perfor-
mance. Vicinity to the oceans favors the forecast skill for the
southern regions of the country (IP, WC, EC). Apart from
regulating the temperature over these regions due to its high
heat capacity, the oceans also provide and retains predictable
signals through SST anomalies for extended time periods.
Perhaps the better representation of these processes by the
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Table 3. Number of forecasts for different combinations of the parameters used in this study.

Parameter combination No. of forecasts

Variable – model 210 forecasts (6 target months, 7 regions, and 5 lead times) by each model for each variable
Variable – target month 210 forecasts (6 models, 7 regions, and 5 lead times) for each variable at each target month
Variable – region 180 forecasts (6 models, 6 target months, and 5 lead times) for each variable in each region
Variable – lead time 252 forecasts (6 models, 6 target months, and 7 regions) for each variable at each lead time
Model – target month 140 forecasts (4 variables, 7 regions, and 5 lead times) by each model at each target month
Model – region 120 forecasts (4 variables, 6 target months, and 5 lead times) by each model in each region
Model – lead time 168 forecasts (4 variables, 6 target months, and 7 regions) by each model at each lead time
Target month – region 168 forecasts (4 variables, 6 models, and 7 regions) for each target month in each region
Target month – lead time 120 forecasts (4 variables, 6 models, and 5 lead times) for each target month at each lead time
Region – lead time 144 forecasts (4 variables, 6 models, and 6 target months) for each region at each lead time

Figure 3. (a) Forecast performance for variables in different models. (b) Forecast performance for variables in different target months.
(c) Forecast performance for variables in different regions. (d) Forecast performance for variables at different lead times.

models also explains why a higher skill is observed at lead
times 2 or 3 instead of lead time 1 over these regions. The
primary reason behind the poor forecast skill for most vari-
ables over western Himalayas is the inadequate representa-
tion of sub-grid scale orography, such as the distribution and
alignment of mountain slopes and valleys that leads to poor
wind speeds forecasts. On the other hand, radiation forecasts
in this region are skilful, possibly due to the lack of aerosols
at such heights.

Our results show that forecast performance does not ap-
preciably degrade with time, which appears to be counterin-
tuitive. The ensemble members of these S2S predictions deal
with all possible states of evolution of the coupled model
and thereby retain some skill that does not decline rapidly
with lead time unlike a single deterministic prediction. A

study by Chen et al. (2010) reported a similar finding that
monthly mean temperature forecasts at lead times of 1 month
and beyond reach a near constant value in the tropics where
SST anomalies induce predictability. Therefore, the horizon
of skilful forecasts, especially in the tropics, is largely de-
termined by the ability of the S2S models to properly sim-
ulate large scale ocean-atmosphere circulation features like
ENSO, MJO, and IOD and their teleconnections due to their
influence on global weather patterns.

Further work is required to establish causal relationships
behind our findings. Of particular importance is to identify
the ability of the models and the parameterizations involved
to simulate earth system phenomena like ENSO, IOD, and
MJO that aid in long-term predictability. Nonetheless, this
study shows that raw S2S forecasts from numerical models
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Figure 4. (a) Forecast performance for models in different target months. (b) Forecast performance for models in different regions. (c) Fore-
cast performance for models at different lead times.

Figure 5. (a) Forecast performance for target months in different regions. (b) Forecast performance for target months at different lead times.

Figure 6. Forecast performance for homogenous regions at different
lead times.

have some skill. This limited skill is a result of systemic er-
rors in the model such as poor formulation of physical pro-
cesses, poor initial conditions, limited resolution of the mod-
els and so on (Doblas-Reyes et al., 2013). Calibrating these
forecasts with respect to a reference observation will make
them closely resemble the observations by adjusting differ-
ent moments of the forecast distribution, thereby minimizing
the errors and enhancing the forecast skill. The fact that these
evaluated forecasts already possess a certain amount of skill
gives hope that calibration will add more value and upgrade
their quality. The calibrated S2S forecasts will then be suit-
able for utilization by stakeholders in the RE industry for
real-world applications.

Data availability. Monthly forecasts were downloaded from
the Copernicus Climate Change Service (C3S) Climate Data
Store (CDS) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
seasonal-monthly-single-levels?tab=form, CDS, 2021). ERA5
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monthly averaged data were also downloaded from the Coper-
nicus Climate Change Service (C3S) Climate Data Store (CDS)
(https://doi.org/10.24381/cds.f17050d7, Hersbach et al., 2019).
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