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Abstract. We present a method for accelerated optimisation
of CO2 injection into petroleum reservoirs. The optimisation
assumes maximisation of the net present value by coupling
reservoir models with the calculation of cash flows. The pro-
posed method is based on the construction of a hierarchy of
compositional reservoir models of increasing complexity. We
show that in dimensionless volumes, the optimal water and
gas slugs are very close for the 1-D and 2-D areal reservoir
models of the water-alternating-gas (WAG) process. There-
fore, the solution to the 1-D optimisation problem gives a
good approximation of the solution to the 2-D problem. The
proposed method is designed by using this observation. It
employs a larger number of less computationally expensive
1-D compositional simulations to obtain a good initial guess
for the injection volumes in much more expensive 2-D sim-
ulations. We suggest using the non-gradient optimisation al-
gorithms for the coarse models on low levels of the hierar-
chy to guarantee convergence to the global maximum of the
net present value. Then, we switch to the gradient methods
only on the upper levels. We give examples of the algorithm
application for optimisation of different WAG strategies and
discuss its performance. We propose that 1-D compositional
simulations can be efficient for optimising areal CO2 flood-
ing patterns.

1 Introduction

Gas flooding is a well-established method of enhanced oil re-
covery (EOR). The injection of gas, particularly CO2 or the
associated petroleum gas, into oil reservoirs allows for a sig-
nificant increase in the microscopic displacement efficiency,
ED, caused by the compositional exchanges between oil and
gas, oil swelling and viscosity reduction (Lake, 1989; Blunt

et al., 1993; Christensen et al., 2001; Thomas, 2008). As
discussed by Pritchard and Nieman (1992), Sanchez (1999),
Jensen et al. (2012), and Johns and Dindoruk (2013), gas in-
jection is often organised in the water-alternating-gas (WAG)
process to also improve the volumetric sweep efficiency,
EV. The total efficiency of oil recovery can be estimated as
E = EDEV (Ghedan, 2009; Verma, 2015).

Optimisation of gas flooding often requires determining
the well patterns, the distances between injection and produc-
ing wells, and the volumes of water and gas slugs in the WAG
injection (Sanchez, 1999; Kovscek and Cakici, 2005; Chen
and Pawar, 2018). It is acknowledged that a larger volume
of injected CO2 results in a better microscopic displacement
efficiency caused by the miscibility. However, the economic
considerations must always be taken into account when opti-
mising CO2 flooding. Since the cost of CO2 is higher than
that of water, the expenses of CO2 injection will at some
point outweigh the gain from the increase in oil extraction.
An optimal volume of injected CO2 exists at which the rev-
enue from the additional oil recovery still exceeds the ex-
penses of CO2 injection (Fig. 1). Therefore, the efficiency of
a CO2 flood should be evaluated by coupling the reservoir
model with the equations for the cash flows. Typically, the
net present value (NPV) is maximised by considering sim-
plified economic processes (Salem and Moawad, 2013; Ro-
drigues et al., 2019), whereas engineering studies can involve
more elaborate models for asset management decisions (Ette-
hadtavakkol et al., 2014). Thereby, the optimisation assumes
finding an injection strategy, e.g. the volumes of gas and wa-
ter slugs, that maximises NPV (Fig. 1). The moment in time
at which the maximum is reached corresponds to the produc-
tion life of the oil field (Afanasyev et al., 2021).

Numerical modelling of CO2 flooding is often conducted
by employing compositional reservoir simulations, which al-
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Figure 1. Sketch of the areal study (a quarter of the five-spot pat-
tern). The colour shows the distribution of oil saturation in the opti-
mized strategy 2(WG)W at PVI= 0.25, �= 2 and the net revenue
for oil exporting of ro=USD 12.5 per one barrel of oil.

low for detailed estimation of compositional exchanges be-
tween the gas and oil phases (Coats, 1980; Orr et al., 1995).
This complicates the optimisation, because compositional
modelling is computationally expensive. Consequently, the
optimal injection strategy should be determined with a rather
limited number of compositional runs. Additional efforts
to accelerate the numerical optimisation should be under-
taken to allow for an accurate solution to be reached within
a reasonable computational time. The improvement can be
achieved by either acceleration of forward simulations, e.g.
by using proxy modelling (Amini and Mohaghegh, 2019;
Wang et al., 2019), or implementing a modified optimisa-
tion method specially designed for such studies (Chen and
Reynolds, 2016).

In this paper, we aim to present our approaches for the nu-
merical optimisation of gas flooding scenarios. Here, we con-
strain the investigation to determining the optimal volumes
of gas and oil slugs for the case of areal CO2 injection. Find-
ing optimal well patterns and distances between injection and
producing wells is beyond the scope of this work. The idea
behind our approach is to construct a hierarchy of reservoir
models of increasing complexity (Fig. 2). The top level cor-
responds to the reservoir model that needs to be optimised,
whereas the lower levels correspond to coarser approxima-
tions of the top-level model. We intend to begin optimisation
with the most coarse model on the first level, which allows
for many computationally-cheap simulation runs. Thus, we
can explore a large region of the parameter space and find a
good approximation of the injection schedule near the global
maximum of NPV. When going up the hierarchy, the initial
guess for the optimal volumes of the water and gas slugs
(i.e. pore volumes injected (PVI)) on the next level is equal
to the volumes obtained on the previous level of the hierar-
chy. The determined PVI are then used as the initial guess on

Figure 2. Sketch of the constructed hierarchy of compositional
reservoir models.

the next level, where a more refined reservoir model is em-
ployed. Since the refined model requires lager computational
resources, we aim to reduce the number of simulation runs
for this model. This is achieved by ensuring that the coarser
model from a previous level provides a good estimate for the
solution to the optimisation study on the next level.

This article is organised as follows. In Sect. 2, we describe
a hierarchy of synthetic models of WAG and briefly overview
all governing equations for both the fluid transport and eco-
nomic processes. In Sect. 3, we discuss the objective func-
tion and its noisy behaviour at large timesteps. In Sect. 4, we
present the details of the proposed optimisation method. In
Sect. 5, we discuss the result of the numerical experiments
related to the optimisation of different gas flooding strate-
gies. We end the article with the conclusions in Sect. 6.

2 Mathematical model and optimisation criterion

2.1 Overview of the reservoir models

For estimating NPV of CO2 flooding, we use the mathe-
matical model presented in our previous work (Afanasyev
et al., 2021). Generally, all parameters of the reservoir model
(e.g. the fluid composition) and the economic calculations are
equal to those in the noted paper. Here, we give only a brief
overview of the involved modelling approaches emphasising
several new developments.

A new feature of the present work is that we consider 2-D
reservoir models corresponding to a quarter of the five-spot
pattern (an injection pattern in which four injection wells are
located at the corners of a square and the production well
sits in the centre), in addition to the 1-D simulations corre-
sponding to the slim-tube experiments. We use a Cartesian
reservoir model of equal lateral extensions L and height H
(Fig. 1). We denote the number of grid blocks along axes x
and y by nx and ny . The number of grid blocks along the
vertical axis z is always 1. Thus, we consider an areal study.
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Two wells are placed in the opposite corners of the sector,
i.e. in the grid blocks (1,1) and (nx,ny). Water and CO2 are
injected into the reservoir through the first well (Injector),
whereas oil, water and gas are recovered through the other
well (Producer). We search for the injection schedule, i.e. the
optimal periods of water and CO2 injection, that maximises
NPV.

Thereafter only two cases of nx and ny are possible:

– 1-D reservoir model (Fig. 3a). nx > 1 and ny = 1, i.e.
the grid dimension is nx×1. This one-dimensional study
was investigated in detail by Afanasyev et al. (2021).
The flow occurs only in the direction of axis x, and all
grid blocks in a sequence from the Injector to Producer
are contacting the injected water and CO2. Thus, this
case corresponds to 100 % efficient volumetric sweep,
EV = 1.

– 2-D reservoir model (Fig. 3b and c) with nx = ny > 1.
This reservoir model corresponds to a quarter of the
five-spot pattern with a regular rectilinear grid. The vol-
umetric sweep is less efficient in this case because some
oil near the distant corners from the wells is bypassed
by the injection fluids.

Certainly, the 2-D model is more complicated than the 1-
D model, because its dimension is higher. Therefore, it is not
obvious how the conclusions of Afanasyev et al. (2021) for
the 1-D model can be applied to this simulation setup. In part,
this study concerns comparison of the optimal strategies in
the 1-D and 2-D studies.

2.2 Governing equations

We employ compositional simulations to estimate the effi-
ciency of oil recovery. We use the three-component mixture
CH4–C6–C16 as a proxy for oil. The initial molar composi-
tion of fluid is 20 % CH4, 40 % C6 and 40 % C16 (Orr, 2007).
The reservoir pressure is 139 bar (the minimum miscibility
pressure (MMP) is ≈ 205 bar) and reservoir temperature is
93 ◦C. The phase equilibria are simulated using the Soave-
Redlich-Kwong equation of state with volume shift (Redlich
and Kwong, 1949; Soave, 1972). The viscosity of hydrocar-
bon phases is predicted using the LBC-correlation (Lohrenz
et al., 1964). The water viscosity is 0.35 cP. The connate wa-
ter saturation is swc = 0.16. The residual saturation of oil
is 0.24. The numerical modelling and optimisation is con-
ducted in our MUFITS simulator (Afanasyev, 2015, 2020;
Afanasyev and Vedeneeva, 2021).

We investigate immiscible gas injection because the reser-
voir pressure is much lower than MMP (Johns and Dindoruk,
2013). We assume that during the injection, the reservoir
pressure does not significantly deviate from its initial value.
This can correspond to the case of a high-permeability reser-
voir. Thus, the changes in pressure do not influence the phase
equilibria and miscible displacement is considered in the ap-
proximation often employed in the method of characteristics

(Pope, 1980; Orr et al., 1995; LaForce and Jessen, 2010).
Thus, our study does not concern injection strategies imple-
menting pressurisation to reach miscibility (Langston et al.,
1988).

To estimate the economic efficiency of the injection, we
couple the reservoir model with a simple model of cash flow.
The economic estimates are based on the calculation of NPV,
where the cash flow includes the expenses for the water injec-
tion and disposal (USD 2 and 1.5 per one barrel of oil) and
CO2 injection and separation (USD 2.55 and 1.33 per one
million standard cubic feet), and the net revenue ro for oil
exporting, typically ro =USD 12.5 per one barrel of oil (Tzi-
mas et al., 2005; Salem and Moawad, 2013; Rodrigues et al.,
2019). These and other parameters of the coupled reservoir
and economic model are identical to those in Afanasyev et al.
(2021).

2.3 Dimensionless variables

The hydrocarbon pore volume, Vhc = (1− swc)φL
2H , is

identical in the 1-D and 2-D models, where φ is the poros-
ity. Therefore, it is convenient to compare the models by in-
troducing dimensionless quantities that are identical in both
cases (Afanasyev et al., 2021).

PVI=
Qt

Vhc
, NPV=

J

r̃oVhc
, �=

Qtds

Vhc

1
log(1+D)

(1)

where PVI is the number of injected pore volumes, t is the
injection time, Q is the volume injection rate (at reservoir
pressure), J is the dimensional net present value, r̃o is the net
revenue for exporting unit volume of reservoir oil, tds is the
discount period, D is the discount rate, and � is the dimen-
sionless injection rate. As shown in Afanasyev et al. (2021),
the variables in Eq. (1) allow the number of parameters that
the optimal injection strategy depends on to be reduced and
thus, help to scale up the estimates.

2.4 Injection strategies

We denote the periods of water injection by the symbol W,
the periods of gas injection by G, and the period of simultane-
ous water and gas injection by the abbreviation W+G. Each
period i = 1,2,3, . . . is characterised by the number of in-
jected pore volumes, PVIi. The periods W+G are also char-
acterised by the volume fraction of gas in the injected fluid (at
reservoir conditions). We abbreviate the strategies by a series
of the noted symbols corresponding to the sequence of the in-
jection periods in the order of increasing time. For example,
the abbreviation GW denotes the strategy corresponding to
CO2 injection over an initial period chased by waterflooding.
The abbreviations of all strategies considered in this study are
summarised in Table 1. The injection rate,�, is kept constant
over all periods.
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Figure 3. Sketch of the proposed optimisation method. The 1-D reservoir model is shown on the left (a). The 2-D reservoir models of
different grid resolution are shown on the right (b, c).

Table 1. Injection strategies.

W Waterflooding (i.e. WF)
G Continuous CO2 flooding (i.e. CGI)
WG Water slug followed by continuous CO2 injection (i.e. “gas injection after waterflooding”, GAW)
GW CO2 slug followed by continuous water injection
WGW One WAG cycle chased by waterflooding
2(WG)W Two WAG cycles chased by waterflooding
(W+G)W SWAG strategy (i.e. simultaneous water and CO2 injection chased by waterflooding)
WGWGW Tapered WAG with 2 cycles, where PVI for all periods can be different

2.5 Optimisations criterion

For given parameters, e.g.� and ro, we search for the optimal
parameters of the strategies given in Table 1 by using the
following criterion:

NPV∗ : NPV(PVI)→max, where 0≤ PVI<∞. (2)

Thus, the total injection volume, which can be regarded as
the production life of the reservoir, is determined in the opti-
misation study rather than being a given quantity.

3 The objective function

3.1 Parametrisation

Consider the case of optimising the WAG strategy 2(WG)W
involving two identical WAG cycles followed by waterflood-
ing (Table 1). This strategy is characterised by the volumes
of water and gas slugs in every cycle, which we denote by
PVI1 and PVI2, and the duration of the latest waterflood-
ing, which we denote by PVI5. The cycles are identical, i.e.
PVI3 ≡ PVI1 and PVI4 ≡ PVI2. Thus, the total volume of in-
jected CO2 is PVIg = 2 ·PVI2, and the total volume of in-

jected water in the WAG cycles is PVIw = 2 ·PVI1. It is as-
sumed that the maximum of NPV (denoted by NPVopt) is
reached at the end of the latest water injection period, i.e.
when the total injection volume is

PVIopt = 2(PVI1+PVI2)+PVI5. (3)

The parameter space for the strategy 2(WG)W is three-
dimensional {PVI1,PVI2,PVI5}. We employ an optimisation
method that allows acceleration to be achieved by reducing
the dimension by one, and thus, the two-dimensional parame-
ter space to be considered {PVI1,PVI2}. The method is based
on the introduction of the confidence interval [0, PVImax]
such that PVIopt certainly belongs to it, i.e. PVIopt ≤ PVImax.
Based on our previous study (Afanasyev et al., 2021), we
choose PVImax in the range 1.2–1.5. For a given PVI1
and PVI2, the injection is always simulated until PVImax is
reached. In the numerical modelling, the simulator is forced
to calculate NPV at the end of every timestep and commit
to memory the current PVI and NPV, if the current NPV is
larger than all values of NPV at the previous timesteps. Thus,
at PVI= PVImax, the simulator can report a good estimate
for PVIopt and NPVopt given that the timestep1PVI is small
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Figure 4. True against determined values of PVIopt and NPVopt in
the compositional simulation. The timestep is 1PVI.

enough. Indeed, the values of PVIopt and NPVopt are those
committed to the memory.

Let us explain the method in detail. The typical shape of
the NPV(PVI) curve is shown in Fig. 4. With increasing
PVI, NPV increases until point Aopt is reached and then de-
creases because the expenses exceed the revenue. Given that
the timestep is constant (1PVI= const), the simulator de-
termines only a countable set of points Ai , i = 0, . . .,N on
the curve, where N is the total number of timesteps needed
to reach PVImax. Assume the reservoir simulator is at the
moment in time in the simulation schedule corresponding to
point A1. Then, the abscissa and the ordinate of this point
correspond to the current values of PVIopt and NPVopt, be-
cause the NPV(PVI) increases at A1 (Fig. 4). After another
timestep, the dimensionless time increases by 1PVI and the
simulator calculates the next point A2 on the curve. Since
the ordinate of A2 is larger than that of A1, the simulator re-
places PVIopt and NPVopt with the coordinates of point A2.
The same occurs when the simulator goes on from A2 to A3.
Assume the true maximum of NPV, i.e. the true NPVopt,
is reached in point Aopt between A2 and A3 as shown in
Fig. 4. After the simulator performs another timestep and cal-
culates A4, it does not change PVIopt and NPVopt, because
the ordinate of A4 is less than that of A3. Thus, PVIopt and
NPVopt remain the coordinates of point A3. The same occurs
when the simulator goes on from A4 to A5 and further, if
NPV(PVI) is a decreasing function near and to the right of
A4 and A5. Therefore, the values of PVIopt and NPVopt that
the simulator reports at PVImax are the coordinates of point
A3.

As follows from the described approach, the determined
value of NPVopt is slightly less than the true NPVopt (point
A3 lies below Aopt in Fig. 4). The error in the determined
PVIopt and NPVopt decreases with decreasing1PVI as more
points Ai are calculated on the curve NPV(PVI). Typically,

we choose 1PVI in the range 0.001–0.025, but the selection
criteria for 1PVI are discussed in detail in Sect. 3.4.

We can regard NPVopt and PVIopt as the functions of
only two variables, PVI1 and PVI2, by implementing the de-
scribed approach. According to Eq. (3), the duration of the
latest waterflooding, PVI5, can be determined as

PVI5 = PVIopt− 2(PVI1+PVI2). (4)

Generalising for other strategies the proposed reduction
in the parameter space dimension, we can assume that the
dimension is one less than the number of independent vari-
ables. For example, the dimension for the strategy WGW is
2, the dimension for WG and GW is 1, and the dimension for
W and G is 0. In the latter case, it is sufficient to conduct just
one simulation to determine the optimal PVIopt and NPVopt.
The parameter space dimension for the (W+G)W strategy is
two-dimensional because the period of simultaneous water
and CO2 injection is characterised by two variables, i.e. the
duration of the injection period and the gas volume fraction.

3.2 Typical shape of the objective function

The contour lines of the objective function
NPVopt(PVIw,PVIg) for the strategy 2(WG)W are
shown in Fig. 5. The contours are calculated at �= 2
and ro =USD 12.5 per one barrel of oil. In both 1-D and
2-D studies, the maximum of NPVopt, i.e. NPV∗ (see Eq. 2)
is reached at PVIw ≈ 0.25 and PVIg ≈ 0.28 (point O∗).
Thus, the volumes of water and gas slugs in the cycles are
PVI1 ≈ 0.125 and PVI2 ≈ 0.14, respectively. These quanti-
ties characterise the optimal strategy 2(WG)W. However, the
region of high values of NPVopt is quite large and extends
into the region of high values of PVIg . This means that
large NPV can also be achieved at a higher volume of CO2
injection, although the most optimal parameters are at point
O∗. On the contrary, if PVIg decreases and becomes less
than 0.1, then NPVopt rapidly decreases. Thus, reducing the
CO2 slug volume below a certain limit (i.e. PVIg ≤ 0.1)
causes a significant profitability reduction.

In the limit PVIg = 0, the duration of the periods of CO2
injection becomes 0 and the strategy 2(WG)W degener-
ates into W. In this case, all injection periods correspond
to water injection. Only their total duration PVIopt is rele-
vant, whereas PVI1 and PVI5 can take any values such that
2·PVI1+PVI5 = PVIopt. Consequently, NPVopt does not de-
pend on PVIw at PVIg = 0 and the contour line NPVopt =

0.384 (in the 2-D model) coincides with the straight line
PVIg = 0 (Fig. 5). This value NPVopt = 0.384 is the maxi-
mum of NPV that can be achieved by waterflooding. Note
that NPV∗ = 0.455 for 2(WG)W in the 2-D model.

At a fixed PVIg , the reduction in PVIw corresponds to
smaller volumes of the water slugs. In the limit PVIg = 0,
the strategy 2(WG)W degenerates into GW, where two peri-
ods of CO2 injection stick together and can be regarded as
a single period G. The maximum of NPVopt at PVIw = 0
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Figure 5. The objective function NPVopt(PVIw,PVIg) for the strategy 2(WG)W. The functions for the 1-D and 2-D reservoir models are
shown in panels (a) and (b), respectively.

is reached in point Ogw (Fig. 5). This point corresponds to
NPV∗ = 0.419 for the strategy GW. As follows from the con-
tour lines in Fig. 5, the gain in NPV that can be obtained
by choosing the 2(WG)W strategy instead of GW is larger
for the 2-D model than for the 1-D model. Obviously, this is
caused by a more significant influence of the WAG injection
on the areal sweep efficiency in the 2-D case than in the 1-D
case where EV is always 1.

3.3 Noisy behaviour of the objective function

The objective function NPVopt exhibits a noisy behaviour
because of the time discretisation in the numerical mod-
elling. Indeed, the accuracy of determined NPVopt is
higher at smaller timesteps 1PVI (Fig. 4). To estimate the
noise introduced by the timestepping, consider the function
NPVopt(PVIw,PVIg) for the strategy 2(WG)W in the vicin-
ity of its maximum O∗ at PVIw ≈ 0.25 and PVIg ≈ 0.28
(Fig. 6). The function NPVopt is a rather smooth function
over the considered range of PVI at a small timestep1PVI=
0.001 (Fig. 6). With increasing 1PVI, the contour lines of
NPVopt become more skewed, because Aopt switches be-
tween different points Ai , shown schematically in Fig. 4. At
large 1PVI= 0.025, the noise amplitude becomes so large
that NPVopt exhibits several local maxima near the true max-
imum in point O∗. Certainly, there is another source of noise
in NPVopt related to the space discretisation (i.e. the grid
resolution). But thereafter, we assume that the influence of
1PVI is dominant, which is supported by the numerical ex-
periments.

The noisy behaviour poses additional difficulties for the
numerical optimisation, which can exhibit poor convergence.
Thus, the reduction of the noise amplitude is relevant. As
shown above, the noise can be reduced by using smaller
timesteps 1PVI. However, this can be done at the cost of
more computationally expensive simulations (Fig. 7). In-

deed, for a fixed PVImax, a smaller1PVI forces the reservoir
simulator to perform a larger number of timesteps that can
be estimated as PVImax/1PVI. Assuming that all timesteps
require an equal number of linear and non-linear iterations
and flash calculations (Michelsen, 1982), an order of mag-
nitude reduction in 1PVI approximately results in an order
of magnitude increase in the computational cost of a single
compositional run. A good optimisation should balance be-
tween accuracy and computational cost by using composi-
tional simulations with different 1PVI and grid resolution
nx .

3.4 Gradient against non-gradient algorithms

The noted behaviour of the objective function requires care-
ful selection of the optimisation algorithms. Certainly, if
1PVI and, thus, the noise amplitude are large, then the op-
timisation algorithms based on the calculation of the NPVopt
gradient cannot be applied. Indeed, as shown in Fig. 6, the lo-
cal gradient can point away from the direction of the global
maximum, causing a poor convergence (Fletcher, 2000).
When using the gradient algorithms, it is important to care-
fully choose the step quantity in the numerical differentia-
tion, δPVI. The derivative of the objective function can be
approximated as:

∂NPVopt

∂PVI
=

NPVopt(PVI+ δPVI)−NPVopt(PVI)
δPVI

where PVI denotes one of the variables that NPVopt depends
on. A larger δPVI can override the noise, but it also results in
a poor convergence near the maximum of NPVopt. A general
rule that we follow is that the gradient algorithms are applied
if1PVI≤ δPVI, where δPVI = 0.0025 is considered fixed in
this study.

At large 1PVI, the non-gradient (e.g. stochastic) optimi-
sation algorithms are more preferable. In such cases, the
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Figure 6. The objective function NPVopt calculated using the 2-D model for different values of 1PVI = 0.001 (a), 0.005 (b), and 0.025 (c).
The lower panels show the slice of NPVopt at PVIg = 0.29.

Figure 7. Typical simulation time for the 2-D model against the grid
resolution (nx = ny ) for different timesteps 1PVI.

compositional simulations are less computationally expen-
sive (Fig. 7) and thus, more simulation runs can be done with
the same computational resources. This is advantageous for
the stochastic algorithms that normally require a larger num-
ber of iterations than the gradient algorithms.

4 The hybrid optimisation method

4.1 The hierarchy of reservoir models

We propose a hybrid optimisation method based on the con-
struction of reservoir models of increasing complexity and
the implementation of both stochastic and deterministic al-
gorithms (Figs. 2 and 3). The top level of the hierarchy cor-
responds to the reservoir model that needs to be optimised.
It can be a 2-D or 3-D model, possibly with a fine grid. We
assume that such a detailed compositional model is compu-

tationally expensive and should not be simulated too many
times. Going down from the top (e.g. Level 3 in Fig. 3) to the
bottom levels of the hierarchy, the number of grid blocks re-
duces as the model becomes coarser. For example, a coarser
grid can be applied (Level 2) or even the dimension of the
study can be reduced (Level 1). At lower levels, the mod-
els can also employ larger timesteps, 1PVI, being coarser
in terms of the time truncation error. Thus, more iterations
of the optimisation algorithm can be carried out at the lower
levels with the given computational resources.

An important property of the hierarchy is a good scaling of
the solution to the optimisation study. The optimal volumes
of the water and gas slugs, PVIi, determined with the models
at a current level must provide a good approximation to the
solution at the next level up. Thus, the initial guess for PVIi
can be transferred up the hierarchy (Fig. 2). Therefore, the
models of the lower levels, because they are less computa-
tionally expensive, are employed for estimating PVIi used as
the initial guess in the upper levels.

Thus, the method includes finding the solution to the op-
timisation problem at a lower level. Then, the determined
solution is passed to the next upper level where it is used
as the initial guess for PVI. Then, the optimisation problem
is solved at this upper level. This sequence of steps is re-
peated until the uppermost level of the hierarchy is reached.
Since the lower levels are used only for constructing the ini-
tial guess, the solution to the optimisation problem at all lev-
els except the uppermost level may be inaccurate. Therefore,
a large timestep, e.g. 1PVI≥ 0.01, is recommended at the
lowest levels to make the compositional simulations even
cheaper. As discussed in Sects. 3.3 and 3.4, this results in
a noisy behaviour of NPVopt and requires application of a
non-gradient optimisation algorithm at the lowest levels. For
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example, the particle swarm optimisation (PSO) can be em-
ployed to search over a large region of the parameter space
for a good approximation of the global maximum of NPVopt
(Kennedy and Eberhart, 2021). This is a useful property of
the method, because NPVopt can exhibit several local max-
ima (Afanasyev et al., 2021). Using a stochastic optimisa-
tion, which usually requires a larger number of iterations than
in a gradient optimisation, is reasonable on the lowest lev-
els, where the compositional simulations are cheap (Fig. 3).
Moreover, the stochastic optimisation is recommended for
the lowest levels to determine a good approximation of the
global maximum of NPVopt.

At the upper levels of the hierarchy, a gradient algo-
rithm of optimisation, e.g. the Broyden–Fletcher–Goldfarb–
Shanno algorithm (BFGS; Broyden, 1970), is more prefer-
able (Fig. 3). This is justified since the gradient optimisa-
tion usually requires fewer iterations and the simulations get
more expensive up the hierarchy. Moreover, the upper lev-
els do not require a large number of simulations to explore
the whole parameter space. Since an approximate location of
the global maximum is known from the lowest Level 1, the
volumes PVIi change only locally near the global maximum.

4.2 1-D versus 2-D simulations

The proposed method is rather straightforward. However, its
successful implementation is based on the assumption that
the solution at every given level provides a good initial guess
for the next upper level. This assumption is not questioned
in the case of simply increasing the grid resolution (e.g. the
transition from Level 2 to Level 3 in Fig. 3). However, if the
reservoir model changes more significantly, e.g. the problem
dimension changes (the transition from Level 1 to Level 2 in
Fig. 3), then the validity of this assumption is not obvious.
It should be validated in every particular case and a good
parametrisation of the hierarchy is the recipe for success.

Consider a particular case of the parametrisation intro-
duced in Sect. 3.1. Its implementation for optimising the 2-D
areal gas flooding is based on the assumption that the solu-
tion to the 1-D optimisation study is a good approximation
of the solution to the 2-D study. This implies that the optimal
dimensionless volumes of the water and gas slugs are close
in the 1-D and 2-D models. The validity of such an assump-
tion is not obvious given that EV = 1 for the 1-D study and
the areal (i.e. volumetric) sweep efficiency can potentially be
rather small for the 2-D study due to the viscous instability
and channelling. Further, we prove that it is pretty accurate
over a large region of the parameter space and for various
injection strategies if criterion Eq. (2) is used in the optimi-
sation.

As shown in Fig. 8, the objective function NPVopt(PVI1)

and the total injection volume PVIopt(PVI1) for the strategies
WG and GW are close in the 1-D and 2-D models. The op-
timal PVI1 of the first water and gas slug, respectively, PVI∗
and NPV∗ in the 1-D problem, are close to those in the 2-

Figure 8. The objective function NPVopt and the production life
PVIopt for the 1-D and 2-D simulations of the strategies WG and
GW at �= 2 (panels a and b, respectively).

D problem. The corresponding functions NPVopt look some-
what similar, although NPVopt in the 2-D case is smaller than
in the 1-D case, particularly at PVI1 = 0 due to lower areal
sweep efficiency. However, the global maximum of NPVopt
is approximately at the same PVI1 in both cases. Thus, the
solution to the 1-D study serves as a good approximation of
the solution to the 2-D study for the considered �, ro and
injection schedules. A similar behaviour shows the 2(WG)W
strategy (Fig. 5).

The results of other numerical experiments are sum-
marised in Fig. 9. In the cross-plot, the abscissa and the or-
dinate of every point correspond to the same and indepen-
dently optimised strategies using the 1-D and 2-D models,
respectively. All parameters characterising each strategy, i.e.
PVIi for all injection periods and the gas volume fraction for
the simultaneous injection W+G (sg), are plotted along the
axes. The maximum injection rate and the net revenue are
varied in the range �= [0.5,2] and ro =USD [12.5,25] per
one barrel of oil. All calculated points group near the dashed
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Figure 9. Parameters of the optimised 2-D studies against those of
the 1-D studies.

straight line, ensuring that the optimal solutions for both 1-D
and 2-D studies are close. Thus, the optimised strategies in
the 1-D case serve as a good approximation of the optimised
strategies in the 2-D case.

In all cases, the quantity of NPV∗ in the 2-D models is
slightly less than in the 1-D models (Fig. 9). This is caused
by a less efficient areal sweep in the 2-D models. Since the
injected fluids do not contact the most distant areas from the
wells, the oil recovery efficiency and, thus, NPV∗ are smaller.

5 Numerical experiments

5.1 Overview

The results of the CO2 flooding optimisation with the pro-
posed method are summarised in Figs. 10 and 11. The injec-
tion schedules determined on each level of the hierarchy are
shown with the horizontal bars, where the durations of the
injection periods in PVI are given within the rectangles. The
total width of the bars shows the bulk injection volume at the
moment in time when the maximum of NPV is reached (i.e.
at PVIopt). The optimisation algorithm, the grid resolution
and the timestep used on each level are noted above the cor-
responding bar. The movement up the hierarchy corresponds
to the movement from top to bottom in the diagrams. The
changes in NPV as the optimisation progresses up are shown
in the right-hand panels of the diagrams. The uppermost NPV
is the net present value determined on the lowest level of the
hierarchy. When the algorithm moves to the next level, first
it recalculates NPVopt using the reservoir model of the next
level and the injection schedule of the previous level. This
NPVopt is the upper of the two quantities shown to the right

Figure 10. Diagram showing the method performance in the WG
strategy optimisation at �= 2.

of the corresponding bar. It can be slightly smaller than that
determined on the previous level due to changes in the grid
resolution and the dimension of the study. Then, the optimi-
sation is conducted on the next level and NPV increases up to
the lower value shown to the right of the bar. The lowest num-
ber in the right column is NPV∗ in the optimised strategy, i.e.
NPV determined on the uppermost level of the hierarchy.

The bottom panel in each diagram shows the distribution
of the computational resources between the levels (Figs. 10
and 11). From left to right, the circle charts indicate the num-
ber of compositional simulations on each level, the compu-
tational cost per simulation and the computational cost per
level.

For argument’s sake, we assume that even approximate
values of the slug volumes are unknown before the opti-
misation, although they can be estimated from our previous
work (Afanasyev et al., 2021). Thus, we suppose that even
an approximate solution to the 2-D study is unknown and
the optimisation begins from scratch. Our only assumption is
that the confidence interval for the optimal slug volumes is
PVIi ∈ [0,0.6], which is not very restrictive. Further, we dis-
cuss the algorithm performance for three different strategies
of increasing complexity.

5.2 The WG strategy optimisation

The results of the hierarchy of models application for the WG
strategy optimisation are summarised in Fig. 10. We apply
the PSO algorithm on the lowest level. The number of parti-
cles is set equal to 16. They can move 7 times, thus 112 com-
positional simulations are conducted on the lowest level. In
this and any other implementation of PSO, the inertia weight
is 0.5 and the acceleration coefficients to the best location of
both a particle and the swarm are 2.0. Due to the reasons dis-
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cussed in Sect. 4, we employ a rather coarse 1-D study on the
lowest level (Fig. 3). Each simulation involves only 50 grid
blocks and the timestep is very large, 1PVI= 0.02, result-
ing in a very low computational cost per simulation on Level
1. Consequently, Level 1 acquires less than 1/4 of the to-
tal computational resources for the optimisation study, even
though almost 3/4 of the compositional simulations are con-
ducted on this level.

On Level 2, we switch to the coarse 2-D model and employ
the BFGS algorithm, i.e. the gradient optimisation. This re-
quires a smaller timestep,1PVI= 0.001, to make the objec-
tive function smooth. Consequently, the computational cost
per simulation is much larger on Level 2 than on Level 1,
even though the number of grid blocks does not increase sig-
nificantly (from 50 to 225). This is caused by a 20 times
larger number of timesteps that the simulator is forced to
perform on Level 2. As a result, Level 2 is the most time-
consuming step of the optimisation.

On Level 3, we switch to the fine 2-D model involv-
ing 50 grid blocks along both axes, i.e. 2500 grid blocks
in total (Fig. 3). In an attempt to reduce the computational
cost, we specify a less restrictive constraint on the timestep,
1PVI= 0.0025, than on Level 2. Nevertheless, a composi-
tional simulation on Level 3 takes twice as many computa-
tional resources. We assume that 1PVI= 0.0025 still is a
reasonable timestep to converge to a point near the global
maximum of NPVopt. Due to a smaller number of simula-
tions, Level 3 appears to be less expensive than Level 2.

The volumes of the water and gas slugs do not significantly
change up the hierarchy (Fig. 10). For instance, PVI1 is 0.222
on Level 1, then it is changed to 0.192 and finally, to 0.207
on Level 3. Again, this supports that the optimised injection
schedules for the 1-D and 2-D models are pretty similar. At
the same time, NPV∗ reduces considerably from 0.4277 to
0.4019, reflecting that EV < 1 in the 2-D model.

5.3 The WAG strategies optimisation

Now we discuss the method performance in the case of the
strategy 2(WG)W (Fig. 11a and b). We apply the same se-
quence of algorithms as in the case of the strategy WG, i.e.
PSO on Level 1 and BFGS on Levels 2 and 3. Only insignif-
icant changes of the slug volumes occur when moving up
the hierarchy. Similarly to the strategy WG, the method in-
volves a larger number of cheap compositional simulations
on Level 1 and a smaller number of expensive simulations
with the fine reservoir model on Level 3.

Actually, the method performance depends on the in-
jection rate � and the net revenue ro. At �= 1.43 and
ro =USD 6.25 per one barrel of oil, the optimised injec-
tion schedules are almost identical for the cases of 15× 15
and 50× 50 grids (Fig. 11a). Consequently, on Level 3, the
BFGS algorithm needs only one iteration to converge. On the
contrary, at �= 2 and ro =USD 12.5 per one barrel of oil,
the optimal CO2 slugs on Level 3 are smaller than those on

Level 2 (Fig. 11b). Therefore, the BFGS algorithm requires
three iterations to converge and, thus, larger computational
resources on Level 3.

Consider a more complicated case of the WAG strategy
with two different WAG cycles. Previously, we assumed
that the slug volumes of water and gas are identical in the
first and second cycles, respectively (i.e. PVI1 ≡ PVI3 and
PVI2 ≡ PVI4). Now, this assumption is not employed, and
the slug volumes can be different in the cycles. To distinguish
this scenario from 2(WG)W, we denote such a strategy by the
abbreviation WGWGW (Table 1). Every period of either gas
or water injection has a different length. Thus, the parameter
space of the strategy is four-dimensional, which corresponds
to the four periods in the cycles PVIi, i = 1, . . .,4.

The method performance in the WGWGW strategy opti-
misation is summarised in the diagrams in Fig. 11c and d.
Here, we introduce additional levels of the hierarchy to ad-
dress the larger dimension of the study. Again, we apply the
PSO algorithm on Level 1, where we assume that the WAG
cycles are still identical, i.e. PVI1 ≡ PVI3 and PVI2 ≡ PVI4.
Thus, Level 1 does not differ from that in the 2(WG)W strat-
egy optimisation. We use this level to calculate an initial
approximation of PVIi, supposing that they differ insignifi-
cantly in the two cycles.

On further levels, we allow PVI to be different, i.e.
PVI1 6= PVI3 and PVI2 6= PVI4. In the case �= 1.43 and
ro =USD 6.25 per one barrel of oil, we optimise the 1-D
model using the BFGS algorithm on Level 2. As a result, the
PVI2 and PVI3 decreased significantly at the cost of the in-
crease of PVI1 and PVI4. Then, on Levels 3 and 4, we switch
to the 2-D model, first considering a coarser and then a finer
grid. The noted behaviour of PVI2 and PVI3, which is first
observed on Level 2, is preserved in the subsequent levels.
The optimal strategy begins with the injection of a larger wa-
ter slug followed by a bit smaller CO2 and water slugs. Then,
the injection is followed by a large CO2 slug chased by the
final waterflooding.

In the case of �= 2 and ro =USD 12.5 per one barrel
of oil, we employ PSO on Levels 1 and 2 (Fig. 11d). Af-
ter Level 1, which is similar to that in the previous case,
we allow the cycles to be different on Level 2 and vary in
the range PVIi ∈ [PVIi−0.1,PVIi+0.1], where PVIi are the
slug volumes determined on Level 1. The additional level al-
lows a larger region of the four-dimensional parameter space
to be explored and ensures convergence to the global maxi-
mum of NPV. Further, Levels 3–5 in Fig. 11d are identical to
Levels 2–4 in Fig. 11c. Both optimisations of the WGWGW
strategy require most of the computational resources on the
uppermost level. It would seem that, respectively, the inter-
mediate Levels 2 and 3 and 2–4 in Fig. 11c and d are extra
levels, which can be omitted by employing the uppermost
level with the 50× 50 grid immediately after Level 1. How-
ever, this may lead to convergence to the local maximum at
PVI1 ≈ PVI3 and PVI2 ≈ PVI4. Thus, the intermediate lev-
els are relevant.
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Figure 11. Diagrams showing the method performance in the 2(WG)W (a, b) and WGWGW (c, d) strategies optimisation. The results are
for �= 1.43 and ro =USD 6.25 per one barrel of oil in panels (a) and (c) and �= 2 and ro =USD 12.5 per one barrel of oil in panels (b)
and (d).

As shown in Fig. 11, the tapered WAG allows NPV to
be increased by ≈ 0.01 and ≈ 0.001 at ro =USD 6.25 and
12.5 per one barrel of oil, respectively, as compared to the
2(WG)W strategy. The improvement is insignificant at least
at ro =USD 12.5 per one barrel of oil. The general trend that
we observe for the presented and other optimised schedules
is that the gas-to-water ratio should increase with the cycle
number.

6 Discussion and conclusions

Our key findings related to the optimisation of enhanced oil
recovery are

– The volumes of optimal CO2 slugs are similar in 1-D
and 2-D areal displacements

– 1-D compositional simulations are efficient for optimis-
ing areal CO2 flooding patterns

Indeed, the successful implementation of the proposed
method is based on the observation that the optimised injec-
tion strategies parameterised in the proposed dimensionless
variables are quite similar in the 1-D and 2-D models. Al-
though NPV∗ in the 2-D case is generally lower than in the
1-D case, it is achieved at approximately the same volumes
of water and gas slugs (Fig. 9). This means that the conclu-
sions of our previous study (Afanasyev et al., 2021) are ap-
plicable not only to the 1-D reservoir models corresponding
to the slim-tube experiments, but also to the 2-D models cor-
responding to the 5-spot patterns. Therefore, it is efficient
to determine the optimised strategies by using 1-D simula-
tions, because the optimal PVI in the 1-D and 2-D cases are
close to each other. Since the influence of geological uncer-
tainties on the optimised PVI can be comparable to the PVI
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changes when the coarse 1-D model is replaced by the fine
2-D model, the PVI values determined with the 1-D model
can be regarded as sufficiently accurate. Their changes asso-
ciated with the transition to the upper levels of the hierarchy
can be overridden by the geological and other uncertainties.
Thus, in the field applications, the WAG process optimisa-
tion using the 1-D compositional simulations might be worth
considering, if it is guaranteed that the solution to the 1-D
model allows for a reasonably accurate scaling up to the 3-D
flows in the reservoir. Certainly, this conclusion implies that
the reservoir is rather thin and homogeneous. The reservoir
heterogeneity, the gravity override and other processes can
undermine the noted conclusion. Every reservoir is unique
and thus, the validity of the conclusion should be judged in
each case on its own merits. Here, we only argue that the
conclusion is valid for the considered 2-D sector model.

An outcome of this work that is also worth mentioning is
that the independent parametrisation of each WAG cycle does
not result in a considerable increase in NPV∗. As shown in
Sect. 5.3, PVI independently determined for each cycle can
be quite different in the two considered cycles. However, the
corresponding increase in NPV∗ as compared to the case of
identical WAG cycles is less than 1 %. Such behaviour indi-
cates that the tapered WAG does not considerably improve
NPV∗ in the considered case and if criterion Eq. (2) is em-
ployed in the optimisation. However, this is just an estimate
and a subject of future research.

As we have shown, the proposed hybrid optimisation
method allows the number of compositional simulations to
be reduced with a fine reservoir model. A smaller number of
such simulations are carried out only at the upper optimisa-
tion levels. Most of the other simulations at the lower levels
are less computationally expensive. This results in signifi-
cant acceleration of the numerical optimisation. Another ad-
vantage is the use of PSO at the lowest level, which ensures
convergence to the global maximum of NPVopt. Certainly,
the optimisation can be accelerated even further using a pri-
ori knowledge on the solution and the shape of the objective
function. For example, for the considered oil composition
and the reservoir pressure and temperature, any optimised
WAG strategy that ends with waterflooding requires injec-
tion of PVIg ≈ 0.3 pore volumes of CO2 (see also Afanasyev
et al., 2021). This volume distribution between different
WAG cycles only slightly changes NPV. Thus, PVIg = 0.3
can be adopted as a good approximation for the total injected
volume of CO2 instead of its estimation at the lowest levels
of the hierarchy.
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