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Abstract. Considering climate change, it is essential to re-
duce CO2 emissions. The provision of charging infrastruc-
ture in public spaces for electromobility – along with the
substitution of conventional power generation by renewable
energies – can contribute to the energy transition in the
transport sector. Scenarios for the spatial distribution of this
charging infrastructure can help to exemplify the need for
charging points and their impact, for example on power grids.

We model two kinds of demand for public charging in-
frastructure. First, we model the demand for public charging
points to compensate for the lack of home charging points,
which is derived from a previously developed and published
model addressing electric-vehicle ownership (with and with-
out home charging options) in households. Second, and in
the focus of the work presented here, is the demand for pub-
lic charging infrastructure at points of interest (POIs). Their
locations are derived from OpenStreetMap (OSM) data and
weighted based on an evaluation of movement profiles from
the Mobilität in Deutschland survey (MiD, German for “Mo-
bility in Germany”). We combine those two demands with
the available parking spaces and generate distributions for
possible future charging points. We use a raster-based ap-
proach in which all vector data are rasterized and computa-
tions are performed on a municipality’s full grid. The pre-
sented application area is Wiesbaden, and the methodology
is generally applicable to municipalities in Germany.

The model is compared with three other models or model
variants in a correlation comparison in order to determine the
influence of certain model assumptions and input data. The
identification of potential charging points in public spaces
plays an important role in modeling the future energy system

– especially the power grid – as the rapid adoption of elec-
tric vehicles will shift locations of electrical demand. With
our investigation, we would like to present a new method to
simulate future public charging point locations and show the
influences of different modeling methods.

1 Introduction

The dynamic transition to electric vehicles offers the oppor-
tunity for significant CO2 reduction but also presents chal-
lenges due to the need for charging infrastructure to be inte-
grated into the electric grid (Gauglitz et al., 2020).

In order to make the coming challenges for energy system
technology in general and power grids in particular visible
and manageable, numerous models and studies exist to map
scenarios of future charging infrastructure. As mentioned in
Gauglitz et al. (2020), studies range from higher-level distri-
butions using simple allocation variables such as population
or vehicle density (Braun et al., 2018; Vopava et al., 2017;
50Hertz Transmission GmbH, Amprion gmbH, Tennet TSO
GmbH, TransnetBW GmbH, 2018) to specific studies of in-
dividual application areas considering detailed local condi-
tions such as the American state roads (Xu and Meng, 2020)
or individual cities like Hamburg (Rothfuchs et al., 2018). A
comprehensive overview, analysis and categorization of spa-
tial localization methodologies for charging infrastructere is
provided by Pagany et al. (2019b). A connection to tradi-
tional vehicle fleets and driving profiles is established in Bun-
desministerium für Verkehr und digitale Infrastruktur (2021).
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The use of possible destinations from OSM and a derivation
of demand density is presented by Pagany et al. (2019a).

In this respect, our approach is similar, with the addition
of the following aspects: The integrative model takes into ac-
count both home charging points and public charging infras-
tructure and their interconnection, as well as a detailed iden-
tification of parking spaces as potential installation areas for
charging infrastructure. In order to match demands and po-
tentials, we developed a scoring system based on raster cal-
culations. Our approach attempts to combine a generally ap-
plicable methodology in the area of Germany and a detailed,
site-specific modeling of possible future charging points.
To our knowledge, the combination of these features is not
found in any existing literature. With respect to the categories
mentioned in the above review (Pagany et al., 2019b), our ap-
proach is thus user and destination orientated and provides a
demand density as an intermediate step for a localization of
charging stations. While a previous publication (Gauglitz et
al., 2020) addresses the modeling of home charging sites, the
one at hand focuses on public charging sites. The modeling is
intended to achieve the best possible coverage of the charg-
ing demand with a defined number of charging stations and
so that as many (destination or starting) locations as possi-
ble are within walking distance. This is done via the inter-
mediate step of modeling the spatial suitability for charging
points. However, the validation of the charging demand is not
trivial, and due to the lack of a fixed comparison value, the
following research question shall be answered:

What is the impact of a detailed consideration of vehicles
without a home charging option, and what role do different
methodologies generally play in determining the spatial suit-
ability of charging points?

The paper comprises a description of the methodology
(Sect. 2) and the results (Sect. 3), each of which is divided
into subsections on the input data (Sects. 2.1 and 3.1), the
scoring (Sects. 2.2 and 3.2), the rasterization (Sects. 2.3 and
3.3) and a model comparison (Sects. 2.4 and 3.4). The paper
closes with the discussion and conclusion (Sect. 4).

2 Methodology

This section presents the methodology we have developed,
starting with the selection and preparation of input data
(Sect. 2.1), followed by the quantified scoring of demands
for public charging points (Sect. 2.2) and the raster calcula-
tions (Sect. 2.3) and finally leading up to the methodology of
a model comparison (Sect. 2.4). The section is followed by
the presentation of the results in Sect. 3.

2.1 Methodology: Input data preparation

In order to create scenario locations for the public charging of
e-vehicles, data are needed that represent both the potentials
and the demand for charging points. Potentials arise from

parking spaces of different types. The demand can arise from
two driving forces: on the one hand, by e-vehicles without
home charging possibility and, on the other hand, by driving
destinations, which we refer to as POIs. For the input data,
wide availability (at least within Germany) and high spatial
resolution are desirable.

For both the demand data by POI and the potentials, OSM
thus appears to meet both requirements well, verifiably and
free of charge. We assume that the the POI data are appro-
priate for a future scenario, at least in the medium term.
In order to investigate which of the POIs mapped by OSM
could be relevant for the evaluation of charging demand, the
approach frequency of POIs is examined. For this, we use
the categorization from the broad survey of mobility behav-
ior in Germany MiD, including the evaluation of more than
127 000 trips categorized specifically into shopping, errands
and leisure (Nobis and Kuhnimhof, 2018). We filter the trips
by the size of the city (according to the application area)
and trips by car (as driver or passenger). For the selection
of POIs, the most important categories of the MiD survey are
used until at least 80 % of the paths are covered by these cat-
egories, and OSM objects are assigned to these. Correspond-
ing to this, the different possible types of parking spaces are
searched and saved for the integration of parking space po-
tentials in OSM, resulting in different object types (points,
lines, areas). The target formats for further processing are
points for POIs and areas for parking potentials, so the fol-
lowing conversions are performed:

1. Two-dimensional POIs are reduced to a point object by
means of the centroid.

2. Parking spaces are converted into areas: point-type
parking spaces are converted into a circle based on their
number of parking spaces (OSM key “capacity”), the
area of which corresponds to the capacity size. Linear
parking spaces (along the street) receive a buffer accord-
ing to their parking space potential (e.g. parking bays in
transverse orientation to the street provide more park-
ing space than those in longitudinal orientation), as de-
scribed in the following.

To determine the buffer, the following equations are set up,
starting with Eq. (1) for the length that a parking space occu-
pies, depending on the parking orientation, which is given as
value in OSM (compare Appendix A, Table A2):

lper parking slot =

{
la, for parallel parking
lb, for perpendicular parking
lb ·
√

2, for diagonal parking
, (1)

where la is the parking slot length, lb is the parking slot
width and lper parking slot is the length of street that one park-
ing slot needs. One can use two terms to determine the num-
ber of parking spaces, lstreet ·wbuffer · 2

la · lb
and lstreet ·aeff ·asides

lper parking slot
, where

wbuffer is the buffer width, lstreet is the length of the street
in total, aeff is the assumed proportion of the length of the
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street available for parking space (assumend with 0.3) and
asides is a factor determining whether parking is possible on
both sides (given by the OSM key, compare Appendix A, Ta-
ble A2, with asides = 1 for parking on the left or right side and
asides = 2 for parking on both sides). From these two terms,
one can derive the following Eq. (2) for buffer width:

wbuffer =
aeff · asides · la · lb

lper parking slot · 2
. (2)

To determine the need for public charging infrastructure due
to a lack of home charging options, existing actual data are
not helpful, as we are concerned with mapping electric ve-
hicles in a future scenario. We resort to an existing model
that is characterized by the inclusion of socioeconomic data,
the modeling of demographic change and a weighted ran-
dom distribution of e-vehicle ownership based on a utility
analysis at the household level, which is described in detail
in Gauglitz et al. (2020). A possible simplification of the in-
put data for e-vehicles without home charging options based
on apartment buildings is discussed in Sect. 2. The data are
merged in a PostGIS database, object-based and georefer-
enced. All input data are generally available for applications
throughout Germany, although uniform data quality cannot
be assumed for user-generated data such as OSM.

In summary, input data from the MiD survey (for the se-
lection of POIs and the evaluation of their importance), from
OSM (for the locations of POIs and parking spaces), and
from model data from a previous model (for e-vehicle own-
ership) are used and processed.

2.2 Methodology: Scoring

In order to quantify the demand for charging infrastructure,
we use a top-down methodology considering frequencies of
arrival at POI categories. For this purpose, the demand men-
tioned in Sect. 2.1 is assigned a scoring. The relevant factor is
the relative comparison of the weightings among each other.
For traceability, the sum of all weighting points was chosen
to correspond to the number of charging points. Scoring is
thus a unitless variable. However, the sum over the scoring
remains the same in the course, so that a scoring of 1 in each
step represents the demand for a loading station. Or, for ex-
ample, 10 parking spaces with a scoring of 0.1 in total repre-
sents the demand for one charging point.

The total number of charging points is considered a prede-
fined target value in the context of this paper. In the project
Ladeinfrastruktur 2.0 (LI2.0, Charging Infrastructure 2.0), it
is determined on the basis of regionalization at the commu-
nity level (Gauglitz et al., 2020) and validated in the project
on the basis of local experience (Gauglitz, 2020).

The total size of the scores is distributed to individual ob-
jects using a top-down procedure. In this case, a fixed total
score is divided into individual objects, which can later be
divided into parking spaces. The (unitless) size and mean-
ing of this scoring remains the same. First, the total scor-

ing is divided into the two groups POI and vehicle without
home charging. The number of vehicles without home charg-
ing first determines the share that is allocated to a certain
area, while the remainder is allocated to the POI scoring.
When scoring vehicles, each vehicle is considered equally.
The scoring for the POI is carried out in two steps. In the
first step, we use categories for path types in the MiD sur-
vey that differentiate different destinations (e.g. everyday ne-
cessities or sports). The frequency of arrival at the different
MiD categories allows the scoring of the MiD category as
a whole. This assumption seems plausible since the number
of trips (filtered as described in Sect. 2.1) provides a clear
reference to possible charging opportunities. In the second
step, the category score is transferred to an individual POI. A
size-dependent weighting is taken into account, where every
POI is given one of three size classes, in order to distinguish,
for example, a large hospital from a single doctor’s practice.
The differentiation into exactly three size classes is arbitrary
and is justified by pragmatism. An allocation is performed
for each MiD category according to the following Eq. (3):

si =
sges

h∑
j=1

(nj · fj )

· fi , (3)

Where j is the size class, i is the considered size class, h is
the highest size class, si is the scoring of one POI (depending
on category and size class), sges is the scoring of the category
in total, ni is the number of POI objects in one category and
fi is a factor for the weighting per size class (determined by
estimation and documented in Sect. 3.2).

2.3 Methodology: Raster calculation

This section presents a series of raster calculations to pro-
vide, first, a scenario with charging point distributions (e.g.
for the power grid calculation) and, second, a map with suit-
ability ratings that allows for comparisons with other models.

In the first step, the drivers (POIs and vehicles) and po-
tentials, which are initially object-based in the methodology
described in Sect. 2.2, are rasterized and the evaluations of
the drivers carried over. The parking lots are rasterized, re-
sulting in a true/false map. The input data and this first step
are shown schematically in Fig. 1a and b. The raster pixels
are shown enlarged in the schematic representation. In the
calculation, the area of one raster pixel corresponds to one
parking slot with 15 m2 (resulting in a raster pixel length
of 3.873 m) – compare specifications with Forschungsge-
sellschaft für Straßen- und Verkehrswesen e.V. (2005). This
allows for a simple boolean storage for the later allocation of
parking spaces.

In the next step, the sum of the surrounding parking
spaces is determined for each pixel with a demand score
(see Fig. 1c), using a kernel raster calculation with a ra-
dius of 300 m, following common bus stop spacings that
seem plausible for vehicle accessibility (Christian Scheler,
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Figure 1. Scheme raster calculation.

personal communication, 2021; Moos, 2021). In contrast to
the schematic representation with a few pixels for the circum-
circle, the radius in the actual calculation method thus corre-
sponds to 300 m/3.873 m≈ 77. In the next step (see Fig. 1d),
the scoring of the demand pixels per surrounding parking
slot is derived from the division of the previous matrices.
After that, the sum of the surrounding (divided) scorings is
formed for each parking space pixel (Fig. 1e). The splitting
of the scoring ensures that in the end again an equal scor-
ing is mapped in the vicinity of the charging demands, and
represents the optimal distribution. In contrast, a pure sum-
mation would ensure that more parking areas would auto-
matically lead to more total points in a region and an over-
representative mapping of demand. This is followed by a
weighted random draw to generate a possible distribution of
charging points (which can only be full number). Figure 1f
shows schematically a possible random spatial distribution
of three charging points (pixels with “1”). Zeros marked in
white are pixels that cannot be drawn because they lack eval-
uation, while zeros marked in black are pixels that could have

been drawn in principle. In this example, there is a shortfall
of 0.6 for the parking areas on the upper right (demand of
0.1+0.8+0.7 compared to 1 charging station). In a different
random distribution, there could also be two charging points,
which would result in a shortfall of 0.4 for the parking area at
the bottom left. To summarize the methodology, using Fig. 1:
Various loading requirements are quantified, including the
high loading requirement with a score of 2.1. In this example
(with reduced radius), there are exactly three parking spaces
within its radius. Accordingly, all three parking spaces also
receive a high score (0.7; 0.8; 0.9) and thus a high probability
of being assigned a charging point.In contrast to the method-
ology for the power grid calculation, no detailed charging
point distribution is determined for the model comparison.
In order to map a quantity that can be compared with other
models, only the scoring of the demand is determined (see
Fig. 1b) and distributed according to a radius (again 300 m),
thus generating a heat map that shows the rating of the areas
in a municipality from the demand’s point of view (without
mapping the parking space potentials).
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2.4 Methodology: Model comparison

In order to investigate the influence of the methodology on a
consideration of charging point suitability in space, a model
comparison is carried out. A total of four different models
are compared with each other by examining the correlation
of the spatial suitability for charging points. In the follow-
ing, we first summarize the four models to then explain the
methodology of the correlation comparison.

The first model is the model we developed and whose
methodology is described in Sect. 2.1 to 2.3. The model
provides a heat map with a quantified demand for charg-
ing points, which is derived from POIs and vehicles with-
out home charging options. The second model is a sensitivity
variant of the first model in which a simplified input data set
is used to decouple the model from the vehicle model (see
Sect. 2.1). Instead of a point distribution of vehicles without
home charging points, the corresponding scoring is (equally)
distributed to households in apartment buildings. By com-
paring models 1 and 2, the level of influence of model cou-
pling and the dependence of certain input data on the results
can be quantified. The third model is based on a different
methodology using machine learning methods, which con-
nect empirical utilization data from 6000 existing charging
points in Germany to POI and spatial census data. The algo-
rithm determines influential surrounding factors and evalu-
ates their impact to calculate the relative utilization of a pos-
sible charging point in other areas. The methodology is de-
scribed in Wagner et al. (2014). This means that, here, the
physical equivalent is different than in models 1 and 2 (scor-
ing vs. potential utilization), but it can be reconciled via a
correlation comparison, as both fundamentally represent the
suitability of the location for public charging infrastructure.
We selected the model for two reasons. First, it uses simi-
lar source datasets, but a different methodology. Second, it
provides a direct link to the view of the German Distribution
System Operators (developed by a subsidiary of Thüga Ak-
tiengesellschaft), and is thus an important comparative model
from the stakeholder perspective. By comparing model 3 to
models 1 and 2, it is possible to examine and quantify what
distinction is made by a fundamentally different modeling
methodology. As a fourth model, a trivial evaluation is used
where a shorter distance to the city center results in a higher
score. The data set is to be understood as a test data set by
which the level of correlation between the other models can
be made clear. A summary overview of the most important
aspects of the models is shown in Table 1.

To establish a correlation comparison, the model data are
evaluated at 1000 random spatial points and put into a corre-
lation matrix, where each of the four models is compared to
the others.

3 Results

The example used for application is the German city of Wies-
baden. Due to the availability of data for the whole of Ger-
many and the generally applicable methodology, results can
generally be generated for all municipalities in Germany,
compare Sect. 2.1.

3.1 Results: Input data preparation

The methodology described in Sect. 2.1 is used to map both
the demand and potential for public charging. The results of
data selection and preparation are presented here. An evalu-
ation of the MiD categories shows the frequency of visits to
POIs by categories. All shopping, errand and leisure trips in
the MiD survey, divided into 31 categories, add up to a to-
tal of 246 226 trips. Of these, 84 788 trips are made by car
(driver or passenger) in large cities. 82 % of these trips are
covered by the top 14 categories shown in Table 2. For most
of them (11 out of 14, and still about 65 % of the trips), suit-
able key/value pairs can be found in OSM.

A list of all OSM keys and values used is found in Ap-
pendix A, Table A1. The objects were assigned a size class
from 1 to 3 according to the authors’ estimation. In addition
to the POIs from OSM, the vehicles without home charg-
ing capability represent another type of demand. The data
are taken from the model described in Gauglitz et al. (2020)
and are available as point distributions. In summary, the fol-
lowing data are available now: Point-type POIs with assign-
ment of a MiD category and area-type parking lots (see Ap-
pendix A, Table A2).

3.2 Results: Scoring

The methodology described in Sect. 2.2 yields a scoring
that is dependent on the type of demand (replacement of
a missing home charging facility or POI) and, in the case
of POIs, dependent on the MiD category and size class.
Each of the size classes gets a factor, which needs to be as-
sumed to differentiate different charging demands of POI.
Assuming three size classes and the size class factors fi=1 =

1(for size class i = 1), fi=2 = 5 and fi=3 = 25, the values
shown in Table 3 result.

The following example is given for the interpretation of
the Table 3: The MiD category of Doctor’s appointment or
similar (category D) gets in total 5.7 % (615.6) of all scoring
points (10 810) in Wiesbaden. These are divided into indi-
vidual POIs, taking into account the size class. So a doctor’s
office (size class 1) gets a scoring of 2.45 and a hospital (size
class 3) gets a scoring of 29.43. Together with the results
from 3.1, georeferenced scores are obtained.

3.3 Results: Raster calculation

The rasterized demands (formerly point-type) and parking
potentials (formerly area-type) result in two layers of a raster
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Table 1. Model comparison.

No. Methodology Input Data Output

1 Creating a demand-map based on
a scoring of charging demands of
POIs and electric vehicles without
home charging (see Sect. 2.1
to 2.3).

Numbers for vehicles and charging points for municipalities
from upstream model model (Gauglitz et al., 2020);
POI: MiD survey, OSM-objects;
Vehicles without home charging: individual vehicles from
upstream model (Gauglitz et al., 2020), which uses e.g. de-
mographical parameters and social-economic data

Unitless parameter
corresponding to the
demand according to
the number of charging
points

2 Similar Methodology to Model 1,
charging demands derived from
POIs (same as Model 1) and
multi-dwelling houses (different to
Model 1)

Numbers for vehicles and charging points for municipalities
from upstream model model (Gauglitz et al., 2020);
POI: MiD survey, OSM-objects;
Multi-dwelling houses (Gauglitz et al., 2020)

Unitless parameter
corresponding to the
demand according to
the number of charging
points

3 Machine learning method based
on background data and existing
charging points (Wagner et al.,
2014).

Extensive background data set, e.g. OSM and resident data;
Existing charging stations and their utilization

Parameters for the poten-
tial time utilization [h/d]

4 Simple mathematical model,
derived by just one input (see
Sect. 2.4)

Distance from the city center Unitless parameter
from 0 to 1

Table 2. MiD trips.

Type: translation of the Type: Rank Trips by car in large cities Category
MiD trip designation MiD no. (of all trips)

Everyday necessities 501 1 17 662 (47 582) A
Visiting/meeting acquaintances 701 2 11 878 (29 547) (No POI)
Sports (active) 704 3 6234 (16 631) E
Other products 502 4 5551 (11 924) B
Doctor’s appointment or similar 601 5 5212 (12 915) D
Other errand 604 6 4288 (9963) B
Restaurant, lunch, bar, club 706 7 4272 (14 075) F
General shopping excursion 503 8 2973 (7964) B
Services (hairdresser, cobbler etc.) 504 9 2270 (5314) C
Shopping, unspecified 599 10 2197 (5386) B
Hobby (e.g. playing music) 717 11 2024 (5504) OSM keys unknown
Errand, unspecified 699 12 1912 (5037) OSM-keys unknown
Church, cemetery 713 13 1824 (5997) G
Visit to special event 703 14 1811 (5528) H

map as shown in Fig. 2a. They correspond to the schematic
representation in Fig. 1b from Sect. 2.3. It should be noted
that there are 50 variants for the demand according to the
vehicle distributions, which differ in certain details. The
methodology described in Sect. 2.3 (see Fig. 1c to e) pro-
vides an allocation of the points to the parking areas and a 50
distributions of charging points (Fig. 2b).

The calculations for model comparison are similar, with
fewer intermediate steps: the parking areas are not taken into
account, but the scoring of the demands is assigned uni-
formly to a radius of 300 m.

In summary, the result is, first, a scenario with 50 different
spatial distributions of public charging points, which, for ex-
ample, can be used for the grid calculation. The second result
is a map for a model comparison with a quantified evaluation
of the area, which is independent of the parking potential for
the purpose of the model comparison.

As can be seen in Fig. 2b, the increased density of charg-
ing points (gray circles) per parking space is seen for areas
with higher scoring. The model results thus offer the possi-
bility of incorporating the high-resolution data into detailed
grid calculations including probabilistic methods, compare
Gauglitz et al. (2020), thus providing the basis for mapping
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Table 3. Results: Scoring.

Type Scoring per object Total scoring in category

Vehicle without home charging 0.20 4324 40.0 %

Size class 1 Size class 2 Size class 3

POI MiD category A 2.85 11.42 2086.2 19.3 %
MiD category B 3.05 12.2 36.61 1845.7 17.1 %
MiD category C 1.21 268.1 2.5 %
MiD category D 2.45 9.81 29.43 615.6 5.7 %
MiD category E 1.60 736.4 6.8 %
MiD category F 0.21 0.84 504.6 4.7 %
MiD category G 1.53 215.4 2.0 %
MiD category H 19.45 213.9 2.0 %

Sum (all POIs) 6486 60.0 %

Sum (all objects) 10 810 100.0 %

Figure 2. Raster calculation: Inputs (a) and outputs (b).

possible boundary violations in the distribution system at an
early stage. The more general result of suitability via a de-
mand map offers the possibility of model comparisons and
model validation.

3.4 Results: Model comparison

According to the methodology in Sect. 2.4, the quantified
suitabilities of two models can be compared. Figure 3 shows
the evaluation of 1000 random points for all possible loca-
tions in Wiesbaden as a comparison between models 1 and 2
(the model presented here and the simplified model variant,
see Fig. 3a) and models 1 and 3 (the model presented here
and the model using machine learning methods, see Fig. 3b).

Models 1 and 2 show a strong match. Models 1 and 3 show
a relatively weak match. The correlations between all models
are shown in Table 4, including the simple model 4, where a
shorter distance to the city center results in a higher score.

Table 4. Correlation between models.

Correlation Model . . .

of . . . 1 2 3 4

to 1 1.000 0.999 0.399 0.299
Model . . . 2 0.999 1.000 0.394 0.300

3 0.399 0.394 1.000 0.178
4 0.299 0.300 0.178 1.000

Although, in the cartographic representation, similar ar-
eas seem to yield weaker and stronger suitability (cf. Fig. 4).
Thus, the exact input data set appears to be rather subordinate
in contrast to the applied model methodology.

To more clearly depict differences in the models, a plot
of the difference in the (normalized) models has been in-
cluded in Fig. 5a. However, this only represents the fact that
a different distribution of values prevails over the (normal-
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Figure 3. Model evaluation at 1000 random points.

Figure 4. Maps of model 1 and model 3.

Figure 5. Difference and Ratio of model 1 and model 3.

Adv. Geosci., 56, 1–12, 2021 https://doi.org/10.5194/adgeo-56-1-2021
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ized) scale: While model 1 has some high peak values, the
normalized values appear relatively small in comparison in
most places. Therefore, the ratio of the normalized models
was also calculated, see Fig. 5b. The neutral white corre-
sponds to the quotient of the mean values of the models: The
scale is therefore non-linear, but indicates the qualitative dif-
ferences between the models. In particular areas outside the
settlement areas have a positive evaluation in model 3, but
not in model 1 (see Fig. 5b).

4 Discussion and Conclusion

We presented a model to generate possible future distribu-
tions of charging points in public spaces. To investigate the
influence of different model approaches, a model compar-
ison was carried out in which four different models were
compared in a correlation analysis. By generating a charging
point distribution at a high resolution, our model allows for
a more detailed approach to strategic planning processes for
the electricity grid than is currently used in practice. Contem-
porary strategic grid planning focuses on medium-voltage
grids, whereas low-voltage grids are planned according to
general objectives based on statistical data, not individual
connection points. The model thus offers a practical benefit,
but further validation is necessary.

The correlation analysis shows a high correlation (of
0.999) between the two models, which use similar method-
ology but slightly different input data. In contrast, the cor-
relation of the two model variants with a third model based
on a machine learning approach is low (0.399 and 0.394, re-
spectively). To put the correlation coefficients into perspec-
tive, the correlation of all models with a trivial model is be-
tween 0.178 and 0.300. In principle, the correlation analysis
cannot evaluate the quality of the models. Nevertheless, the
following conclusions can be drawn from the present work:
The model’s design is much more important than the ex-
act input for the lack of home charging infrastructure. The
type of model input (complex modeling of vehicles vs. apart-
ment buildings) may play a minor role because the demand
for public charging infrastructure is modeled for a surround-
ing area (in this case, with a radius of 300 m). Furthermore,
the correlation analysis shows that different models making
fundamentally comparable basic assumptions and modeling
similar aspects (influence of POIs and socioeconomic data on
public charging demand) do not necessarily produce similar
results and, without an objective evaluation standard, mea-
suring the quality of a model is non-trivial.

Further examinations and model extensions can be divided
into the following three groups: First, there are model aspects
and investigations that are currently being implemented but
are not the focus of this paper. This includes distinguishing
public parking spaces with varying suitability for charging
point use (parking structures versus roadside). Furthermore,
we plan to combine the data output with allocations of home
charging points, merging it with other distributed consumers
(such as heat pumps) and generators (such as PV systems)
and using it in grid calculations. This also includes a link
to driving and loading profiles, with which studies on wait-
ing time and utilization become possible. Second, the work
presented here raises some questions requiring further inves-
tigation. These include further investigations about compara-
tive model quality, and also issues of data quality, since OSM
is a user-generated dataset, for which a uniformly high data
availability and data quality cannot be guaranteed. This was
particularly evident in our work with the data on roadside
parking areas. Also related to POIs, data gaps cannot be ruled
out, which generally leads for a spatial shift of demand map-
ping. Our top-down method with intermediate categories can
at least prevent effects on the total demand, but of course
cannot completely exclude inaccuracies in the spatial map-
ping. Third, interdisciplinary model extensions – involving
transportation and urban planning, for example – are a possi-
bility. These could offer added value, but it must be weighed
against their higher degree of complexity.

In summary, this paper has provided a comprehensive
model for determining possible charging point distributions
in public spaces at a high resolution that opens up new meth-
ods of grid calculation.

https://doi.org/10.5194/adgeo-56-1-2021 Adv. Geosci., 56, 1–12, 2021
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Appendix A: Keys and values

Table A1. Keys and values for POI.

MiD cat. OSM key OSM values (with estimated size class in brackets)

A shop Supermarket (2); butcher (1); alcohol (1); bakery (1); greengrocer (1); convience (1); beverages (2);
chemist (2)

amenity marketplace (2)

B shop doityourself (1); books (1); computer (1); electronics (2); mall (3); bicycle (1); florist (1); garden_centre (2);
gift (1); department_ store (3); clothes (1); furniture (2); jewelry (1); shoes (1); toys (1); sports (2); mo-
bile_phone (1); pet (1); video (1)

C craft Photographer; jeweller; locksmith; key_cutter; tailor; dressmaker; shoemaker; clockmaker;
hairdresser (all: 1)

shop optician; travel_agency; dry_cleaning; laundry; hairdresser; beauty (all: 1)

amenity Veterinary (1)

D healthcare Pharmacy (1); doctor (1); hospital (3); dentist (1); clinic (3); centre (2)

E leisure sports_centre; sports_hall (all: 2)

sport soccer; tennis; basketball; baseball; multi; swimming; golf; equestrian; running; athletics; fitness; beachvol-
leyball; climbing; volleyball; skateboard; table_tennis; american_football; boules; bowls; motor; shooting;
cricket; netball; skiing; gymnastics; rugby_union; horse_racing; motocross; cycling; karting; free_flying;
handball (all: 2)

F amenity bar (1); biergarten (2); café (1); ice_cream (1); fast_ food (2); pub (2); restaurant (2)

G amenity place_of_worship (2)

building church (2)

landuse cemetery (2)

H leisure stadium (3)

building stadium (3)

amenity concert_hall (3)

Table A2. Keys and values for parking spaces.

Key Values

amenity parking
parking multi-storey; underground
building parking; carport
parking:lane:left parallel; diagonal; perpendicular
parking:lane:right parallel; diagonal; perpendicular
parking:lane:both parallel; diagonal; perpendicular

Adv. Geosci., 56, 1–12, 2021 https://doi.org/10.5194/adgeo-56-1-2021
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