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Abstract. Within the ERA-NET co-funded ACT project Pre-
ACT (Pressure control and conformance management for
safe and efficient CO2 storage – Accelerating CCS Technolo-
gies), a monitoring concept was established to distinguish be-
tween CO2 induced saturation and pore pressure effects. As
part of this monitoring concept, geoelectrical cross-hole sur-
veys have been designed and conducted at the Svelvik CO2
Field Lab, located on the Svelvik ridge at the outlet of the
Drammensfjord in Norway. The Svelvik CO2 Field Lab has
been established in summer 2019, and comprises four newly
drilled, 100 m deep monitoring wells, surrounding an exist-
ing well used for water and CO2 injection. Each monitoring
well was equipped with modern sensing systems including
five types of fiber-optic cables, conventional- and capillary
pressure monitoring systems, as well as electrode arrays for
Electrical Resistivity Tomography (ERT) surveys.

With a total of 64 electrodes (16 each per monitoring well),
a large number of measurement configurations for the ERT
imaging is possible, requiring the performance of the tomog-
raphy to be investigated beforehand by numerical studies. We
combine the free and open-source geophysical modeling li-
brary pyGIMLi with Eclipse reservoir modeling to simulate
the expected behavior of all cross-well electrode configura-
tions during the CO2 injection experiment. Simulated CO2
saturations are converted to changes in electrical resistivity
using Archie’s Law.

Using a finely meshed resistivity model, we simulate the
response of all possible measurement configurations, where
always two electrodes are located in two corresponding
wells. We select suitable sets of configurations based on dif-
ferent criteria, i.e. the ratio between the measured change in
apparent resistivity in relation to the geometric factor and
the maximum sensitivity in the target area. The individually

selected measurement configurations are tested by inverting
the synthetic ERT data on a second coarser mesh. The pre-
experimental, numerical results show adequate resolution of
the CO2 plume.

Since less CO2 was injected during the field experiment
than originally modeled, we perform post-experimental tests
of the selected configurations for their potential to image the
CO2 plume using revised reservoir models and injection vol-
umes. These tests show that detecting the small amount of
injected CO2 will likely not be feasible.

1 Introduction

Carbon Capture and Storage is considered an important tech-
nology to contribute to a carbon neutral society and is again
receiving increased attention in the efforts to reduce CO2
emissions (Bui et al., 2018). To ensure safe operation of such
CO2 storage projects, reliable monitoring technologies are
required (Jenkins, 2020). Electrical resistivity tomography
(ERT) is a long established geophysical technique to image
the resistivity distribution in the subsurface which is subject
to potential process induced resistivity changes. Due to the
generally high electrical resistivity contrast between CO2 and
formation water, ERT can be considered as one of the most
effective geophysical techniques for the long-term monitor-
ing of CO2 distribution and migration in subsurface storage
reservoirs (Yang et al., 2014; Schmidt-Hattenberger et al.,
2016).

To further develop CO2 storage monitoring procedures, a
field experiment was planned at the Svelvik CO2 Field Lab,
a small scale test site located on the Svelvik ridge in Nor-
way (Ringstad et al., 2019). A main goal of the experiment
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was to discriminate pressure- and saturation induced effects,
particularly on seismic measurements. In the first stage of
the experiment, brine was injected to calibrate a rock physics
model used to determine the pressure influence on seismic
velocities. In a second stage, CO2 was injected. From the
difference of both stages reservoir pressure and saturation
should be determined. ERT was intended to act as comple-
mentary measurement in the second stage of the experiment,
to provide an independent estimation of CO2 plume shape
and saturation.

ERT measurement configurations consist of four elec-
trodes, of which two are used for current injection (labeled
A and B) and two are used to measure the resulting poten-
tial (labeled M and N). A key problem of the application of
ERT in the subsurface is the selection of a suitable set of
measurement configurations for the given problem. A total
of 64 electrodes was installed in 4 newly drilled wells sur-
rounding an existing well used for brine and CO2 injection.
For a number of n(64) subsurface electrodes, there exists
n(n−1)(n−2)(n−3)/8 (≈ 1.9 million) independent config-
urations when reciprocal configurations are excluded (Noel
and Xu, 1991). Each configuration has unique features, as
e.g. the associated geometric factor, and a specific sensitivity
for different parts of the subsurface model. The aim of this
study is to reduce the required number of measurements by
selecting the most sensitive electrode combinations to limit
the required run time for a schedule.

The injection of CO2 is a dynamic process. After injec-
tion start rapid changes of saturation occur, while the plume
tends to stabilize with longer injection time. A trade off has
to be made between information due to a limited number of
observations and the observation of a dynamic process, with
each single observation showing a different state due to the
ongoing plume migration.

As shown by Bing and Greenhalgh (2000), configurations
where current and potential electrodes are distributed be-
tween a pair of wells, i.e. AM–BN configurations produce
the highest image quality. AB–MN are generally considered
inferior because the geometric factor turns from positive to
negative in a discontinuous way, leading to low potential
readings. They have however a potentially beneficial sensi-
tivity distribution in the imaging of laterally elongated resis-
tivity anomalies (Zhou, 2019) as would be expected e.g. for
CO2 trapped beneath a cap rock.

Different approaches to select suitable measurement con-
figurations have been proposed and used. Stummer et al.
(2004) were the first to introduce experimental design for
ERT measurements and to present a strategy for optimiz-
ing the measurement schedules for surface measurements.
The method was expanded to homogeneous subsurface prob-
lems for cross-well geometries by Coscia et al. (2008). In
this context, Wagner et al. (2015) incorporated the position
of electrodes itself in the optimization scheme. Alternative
approaches focus on finding an optimal model resolution
for a particular area of the problem space (Wilkinson et al.,

2006; Loke et al., 2014). Uhlemann et al. (2018) expanded
on their work by integrating the optimization of measure-
ment configurations and electrode configurations into a com-
bined approach, which could be useful for future sites where
the electrodes are not yet installed. A common advantage
of these optimization strategies is the consideration of lin-
ear independence of sensitivities, either directly or by maxi-
mizing the diagonal elements of the resolution matrix. How-
ever, this comes at the cost of computational intensity and
memory requirements, i.e. multiplication of large matrices
and solving of large, dense equation systems are required.
Other strategies rely on optimizing the sensitivity of a mea-
surement schedules by directly utilizing the Jacobian matrix
of the problem (Hennig et al., 2008; Athanasiou et al., 2009)
and considering an estimate of the data error in the optimiza-
tion problem (Wilkinson et al., 2012).

The work presented here follows a similar approach by op-
timizing the measurement configurations based on their sen-
sitivity and associated geometric factor, but also considers
the performance over the course of an injection experiment.
Whereas our optimization focuses on the end state of the CO2
injection, it could be extended to intermediate time steps to
determine optimized measurement configurations to best im-
age the dynamics of the injection process.

For CO2 storage projects, generally a high amount of in-
formation should be available in the form of numerical reser-
voir models, incorporating petrophysical information from
well logs and structural information from site exploration.
Therefore, in this study, known geological data is incorpo-
rated into a reservoir model to describe the CO2 migration in
the sub-surface. The modeled CO2 saturations are converted
into an increase in bulk resistivity according to Archie’s Law
(Archie, 1942).

Prior to the CO2 injection, a potential injection regime was
simulated with a site adapted reservoir model. The resulting
plume was transferred to an electrical resistivity increase.
The increase was observed by three ensembles comprising
different electrode configurations. The specific characteris-
tics of the inversion results were assessed.

After the experiment had taken place, the reservoir model
was updated with information acquired during the installa-
tion and results obtained from the injection experiments. The
measured schedules were tested using the revised model in-
cluding site-specific information on the dynamic behavior.

2 Site Description

The Svelvik CO2 Field Lab is located on the Svelvik
ridge peninsula, approximately 50 km SW of Oslo, Nor-
way (Fig. 1a). The ridge is classified as a glaciofluvial-
glaciomarine terminal deposit. The site is characterized by
highly variable grain size distribution with pebble and cob-
ble beds in the overburden. At the site, but outside the area
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addressed in this paper, in 2011, 1.7 t of CO2 were injected
in to a shallow aquifer at 30 m depth (Barrio et al., 2014).

In July 2019, the Svelvik CO2 Field Lab was extended by
drilling four 100 m deep monitoring wells (M1–M4) around
the existing well Svelvik #2. This legacy well was later used
for injection during the planned water and CO2 injection ex-
periments (Fig. 1b). The monitoring wells were equipped
with state of the art sensing systems, including five types of
fibre-optic cables, conventional pressure sensors at reservoir
level, fluid- and gas sampling capillaries, as well as a cap-
illary pressure monitoring system (Wiese et al., 2020). As
schematically illustrated in Fig. 2, an array of 16 electrodes
with equidistant spacing of 5 m, was installed in each well,
from 23 down to 98 m depth (below ground level).

3 Methods

3.1 ERT Theory and Modeling

ERT data is typically acquired in four point configurations,
i.e. the electric current I is injected between two electrodes
generally referred to as A and B. The electric potential U is
measured between a second pair of electrodes often referred
to as M and N. The apparent electrical resistivity is then given
as

ρa =
U

I
k, (1)

where k is the geometric factor that takes into account the
distance and arrangement of current and potential electrodes
(Telford et al., 1990). Large geometric factors correspond to
low potential readings with unfavorable signal-to-noise ratio
and therefore, in general, higher relative measurement errors.

Most commonly, collected ERT data are inverted to deter-
mine the subsurface model which minimizes the discrepancy
between observed and modeled data (Günther et al., 2006).
An important component in the inversion problem is the Ja-
cobi Matrix, which contains partial derivatives of the model
responses for all individual configurations fi with respect
to the model parameters mj (McGillivaray and Oldenburg,
1990). The Jacobian matrix Jij is therefore given as

Jij =
∂fi(m)

∂mj
, (2)

and represents the influence of a particular model cell of the
numerical domain on the simulated apparent resistivity.

An empirical relationship describing the electrical resistiv-
ity of fluid-filled rocks was discovered by Archie (1942) in
the form of

Rrock = a8
−mS−nw Rw, (3)

whereRrock is the bulk electrical resistivity,8 is the porosity,
Sw is the water saturation, and Rw is the brine resistivity.

The factor a is the tortuosity factor, m is the cementation
exponent, and n the saturation exponent.

Often referred to as Archie’s second law, the resistivity in-
dex RI i.e the ratio between electrical resistivity of the partly
saturated rock R and the brine saturated rock R0 can be cal-
culated as

RI=
R

R0
= S−nw =

1
(1− SCO2)

n
, (4)

where and Sw is the water saturation. It can be related to the
CO2 saturation SCO2 = 1− Sw, which is not part of the orig-
inal formulation of Archie’s law. Using RI instead of the ab-
solute resistivity is only possible when baseline data is avail-
able. It has the advantage that the natural variability in the
subsurface is leveled out and does not need to be resolved.

3.2 Modeling Concept

3.2.1 Geological model

The structural reservoir model is based on the interpreta-
tion of two intersecting 2D seismic profiles acquired dur-
ing a previous appraisal and injection campaign on the test
site in 2010 (Bakk et al., 2012; Grimstad et al., 2018). Using
the main structural horizons and interpretation of the logging
campaign the aquifer and cap-rock zones were distinguished.
The structure consists of equally thick layers with a small
dip of 2.7 %. At 65 m depth an aquifer has been identified
as target formation from analyzing grain size distributions
and gamma ray logs. Above 65 m the borehole logs show
a slightly reduced porosity and permeability which is inter-
preted as a barrier for CO2.

The main petrophysical properties determining the sub-
surface migration of the injected CO2 are porosity and per-
meability. We determine these parameters in an approach
also detailed by Wuestefeld and Weinzierl (2020), using
the Greenberg-Castagna relation (Greenberg and Castagna,
1992) given as

VP = ac+ bc8+ cdVCL. (5)

Parameters ac = 5.81, bc =−9.42, and cd =−2.21 are cho-
sen according to the highly unconsolidated environment,
similar to the geologically young Gulf Coast reservoirs like
the Frio formation. VCL is the clay content, and the required
P-wave velocity VP was taken from sonic log from the previ-
ous appraisal campaign. The resulting porosity is on average
26 %.

Permeabilities κ are derived from the porosities using the
Kozeny-Carman equation (Carman, 1997) given as

κ =
1

72τ 2
83

(1−8)2
= B

83

(1−8)2
d2, (6)

with mineral sphere diameters d = 6 mm obtained from the
coarse- to fine grain-size distributions. The tortuosity (τ ≈
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Figure 1. (a) Location of the Svelvik CO2 Field Lab on the Svelvik ridge. (b) Detailed view of the test site with locations of the monitoring
wells (M1–M4) and the injection well Svelvik #2.

Figure 2. Schematic diagram (not to scale) of the ERT array in-
stalled at the Svelvik CO2 Field Lab. Shown as well are typical
electrode configurations used in cross-well imaging.

0.25)-dependent factor B = 0.23 has been calibrated by a
previous hydraulic conductivity test in between 64 and 66 m
depth, which determined a permeability of roughly 150 mD.
Permeabilities are then calculated over the complete model
depth using the estimated porosities. While a rigorous deriva-
tion of permeabilities would include a grain size as well as a
clay content dependent definition, we keep the parameters
used constant over the entire static model.

The determined geophysical parameters have been incor-
porated in a 3D geological model generated with Petrel. The

one-dimensional properties are propagated throughout each
individual stratum of the model. Additionally, we have pop-
ulated the strata of the geological model with resistivity val-
ues from a well log acquired during the previous appraisal
campaign.

The horizontal cell size is 5 m. The vertical cell size varies
between 1 m in the reservoir region (51–71 m depth) and up
to 18 m above the glacial till layer. The horizontal extent is
195 m× 195 m, the depth between 0 and 90 m. The increased
content of fine material above 65 m increases the capillary
entry pressure, which is set to 5 bar. It therefore represents an
effective barrier for CO2 in the model. Following well con-
struction data the injection interval is 1 m, which is shifted by
a few cm to screened model depths between 65.5 and 66.5 m.

3.2.2 Pre-Experiment Eclipse Simulation

The reservoir simulation is set up with Eclipse 300 (Schlum-
berger, 2015). The CO2 injection was modeled for an injec-
tion rate of 200 Sm3 d−1, resulting in a cumulative mass of
23 t of CO2 after 57 d of injection. This is consistent with
an initial feasibility study of geophysical monitoring at the
Svelvik CO2 Field Lab, which had been used for synthetic
controlled source electro-magnetics (CSEM) and full wave-
form inversion (FWI) studies (Eliasson et al., 2014), thus al-
lowing future comparison of the different geophysical meth-
ods. Additional reservoir modeling as part of the feasibility
study used a lower injection rate of 50 Sm3 d−1 due to the risk
of seal fracture at higher injection rates. Subsequent studies,
however, suggested that a maximum injection rate of up to
300 Sm3 d−1 over a period of 28 d is possible without ex-
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ceeding the bottom-hole pressure (BHP) limit of 10 bar in
the injection well (Grimstad et al., 2018).

Figure 3a shows the resulting CO2 saturation after injec-
tion of 23 t of CO2 along a NS cross-section at x = 92.5 m,
which is at the location of the injection well. The largest part
of the gaseous CO2 is contained below the sealing stratum.
Some leakage into the overburden is observed. The CO2 re-
mains contained however. The initial simulation performed
prior to the experiment is discarding solubility effects of CO2
in the formation water.

3.2.3 ERT Forward Modeling Workflow

To perform the ERT modeling we use the free and open-
source library pyGIMLi (Rücker et al., 2017). pyGIMLi is
able to utilize unstructured grids, based on tetrahedral el-
ements. We generate a suitable unstructured grid using the
software Gmsh (Geuzaine and Remacle, 2009). This allows
for finer meshing and subsequently more accurate ERT for-
ward simulations.

The mesh consists of two regions: one finely meshed, in-
ner region that acts as inversion region, that has the same
x and y extent as the Eclipse grid. The z extent is from 10
to 110 m depth. The larger outer region is necessary so that
source positions of the electric field (current electrodes) can
assumed to be constant when considering the boundary con-
ditions (Rücker et al., 2006). It is meshed more coarsely and
symmetrically located around the inner region. The x and y
extent of the outer region is 1000 m. It extends from 0 to
300 m depth.

We use the cell center coordinates for 3D linear interpola-
tion of relevant parameters (porosity, CO2 saturation, electri-
cal resistivity) from the structured Eclipse grid to the unstruc-
tured pyGIMLi mesh. To quantify the error the interpolation
between the grids introduces, we again back-interpolate on
the structured grid (Fig. 3b). Some interpolation errors are
observed. Especially the thin, high saturation layer in 65 m
depth is eroded.

A saturation histogram with a bin width of 5 % is shown in
Fig. 3c. Due to interpolation errors, the CO2 migrates from
higher to lower concentrations, therefore higher concentra-
tions are decreased, and more cells of lower concentration
appear. Additionally, we have calculated the contained CO2
volume in both grids neglecting potential pressure differ-
ences i.e. calculating the sum of cell volume times CO2 cell
saturation for all model cells. The difference between both
grids is ≈ 0.3 %, for the injection of 23 t of CO2.

Figure 4 shows the structured Eclipse grid populated with
electrical resistivity values. Together with the CO2 satura-
tions, as illustrated in Fig. 3 we construct electrical resistivity
models for the ERT forward modeling problem using Eq. (4),
for all reservoir simulation time steps. The saturation expo-
nent n is assumed to have a value of 2, which generally rep-
resents a good estimate for oil-free sediments (Mavko et al.,
2009).

Shown as well in Fig. 4 is a slice through the NW–SE
trending diagonal between observation wells M2 and M1.
The slice shows the resistivity index after the simulated in-
jection of 23 t of CO2. In the following, models and results
will be presented as a slice along this axis. Distance refers to
distance along the diagonal.

3.2.4 ERT Measurement Schedule Selection

For the ERT schedule selection we have used the last simula-
tion time step. As suggested by Bing and Greenhalgh (2000),
we simulate all configurations where always a pair of current
and potential electrodes is located in two corresponding wells
i.e. AM–BN configurations. Additionally, we have included
configurations where both current and potential electrodes
are located in two corresponding wells i.e. AB–MN config-
urations. Crossed dipoles and reciprocal measurements have
been excluded. We also excluded configurations where the
geometric factor is larger than 10 000. This leads to 84 280
potential measurement configurations.

To select appropriate configurations, we have developed
and tested two ranking criteria to image the CO2 distribution.
A volume of interest (VOI) around the simulated CO2 plume
is defined. The VOI has a spatial extent of 75 to 105 m in
the x- and y direction. In the z direction the VOI has a range
from 55 to 75 m depth. The injection well is located at x,y =
92.5 m.

Schedule 1 (geometry optimized schedule) aims to mini-
mize the influence of the geometric factor and maximize the
measured voltage difference in response to the injected CO2.
The electrical resistance R is calculated for the pre-injection
state and after the injection of 23 t of CO2. The difference is
divided by the geometric factor. Individual configurations i
are therefore ranked according to

ranki =
1Ri

ki
. (7)

These schedules can also be split into groups of AM–BN and
AB–MN configurations respectively.

Schedule 2 (sensitivity optimized schedule) is selected by
calculating the sensitivity for each individual electrode con-
figuration. Similar to Hennig et al. (2008), the aim is to max-
imize the sensitivity in a section of the model space. Defining
a weighting vector wj which is one, when the cell center of
the model cell lies within the VOI and zero otherwise. Indi-
vidual configurations i are then ranked according to

ranki =
m∑
j=1
|Jij | ·wj ·Vj , (8)

where Ji: is the sensitivity of an individual electrode con-
figuration for all model cells, extracted as a vector from the
Jacobian matrix. Vj is the volume of the j th model cell, m is
the number of model cells.
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Figure 3. (a, b) Slice through 3D Eclipse reservoir model after the injection of 23 t of CO2. (a) Original CO2 saturation data. (b) CO2
saturation data after interpolating onto the unstructured grid, and then back-interpolating onto the structured Eclipse grid. (c) Histogram
showing the CO2 distribution for original and back-interpolated saturation data. The bin width is 5 %.

Figure 4. Reservoir model grid populated with electrical resistivity values and locations of the monitoring and injection wells. The injection
well is located at x, y = 92.5 m. The green wire frame represents the outer surface of the unstructured inversion region. Shown as well, is a
slice through the 3D reservoir model between well M2 and M1 in terms of the resistivity index R/R0 after the injection of 23 t of CO2.

The volume is already included implicitly in the calcula-
tion of the sensitivity (Geselowitz, 1971). The mesh is lo-
cally refined around the electrodes, so the cells grow away
from the electrodes. By multiplying with the cell volume ad-
ditional weight is given to cells further away from the elec-
trodes.

Schedule 3 (comparison/random schedule) is comprised
as a comparison to the proposed selection criteria. From all
possible cross-well AB–MN and AM–BN configurations it
is pseudo-randomly chosen by selecting every ith generated
configuration so that the selected number reaches the desired
comparison size. This creates a wide range of configurations
with different electrode spacings and geometric factors.
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4 Results

4.1 Pre-Experimet Optimization

To test the proposed criteria, we have selected 1000 mem-
bers using the ranking methods. For the pseudo-random se-
lection we have likewise generated 1000 configurations i.e.
taking every 161th configuration. The schedules are tested
using electrical resistivity models as exemplarily shown in
Fig. 4. The response of the schedules is determined by solv-
ing the ERT forward problem for each time step. The ob-
tained numerical data are then inverted on a coarser mesh.
Since we are interested in imaging the CO2 induced changes,
results are presented in terms of the resistivity index. Since
we are interested in the relative performance of the measure-
ment schedules, we consider noise free data. The Chi2 data
misfits for the CO2 containing inversion result are given in
the respective figure captions.

The geometry optimized schedule (Fig. 5a) resolves the
spatial extent of the resistivity increase outside the observa-
tion wells. However, the maximum RI is approximately 1.75
and thus underestimating the resistivity increase observed
in the original model. The sensitivity optimized schedule
(Fig. 5b) resolves the plume between the observation wells,
but hardly outside. The recovered RI is approximately 4,
close to the original model. Some numerical artifacts are pro-
duced, especially around the electrodes, but also close to the
top of the inversion region. The overview schedule (Fig. 5c)
shows increased resistivity in the relevant area, but the foot-
print of the CO2 is unrealistically small. Also the shape of the
plume is resolved less well compared to the previously dis-
cussed schedules. The peak recovered RI is approximately 3
and therefore closer to the synthetic reality than the geome-
try optimized schedule. A inversion artifact is produced at the
top of the model between the two observation wells, which
is outside the area of coverage however.

4.2 Field Injection Experiment

The CO2 injection experiment took place between 24 Oc-
tober and 5 November 2019. Approximately 1.7 t of CO2
were injected instead of the originally modeled 23 t. Fig-
ure 6a shows the CO2 injection rate during the field exper-
iment. CO2 injection was carried out with an injection rate
of approximately 10 kg h−1 and has been paused during the
weekend. For the injection experiment we have selected 2500
AM–BN as well as 2500 AB–MN configurations using the
geometry optimized criterion discussed in the previous sec-
tion. Due to an error, only 1992 configurations have been
selected for the sensitivity optimized schedule.

So far, given the small amount of injected gas compared
to the modeled scenario, we have not been able to image
the potential CO2 plume inverting the collected ERT field
data. Weak indications of CO2 induced effects are apparent
in the time series of individual configurations (Fig. 6b). The

increases are generally smaller than 1 %. The increases in ap-
parent electrical resistivity mostly subside over the weekend,
so that the experiment could be considered as two separate
injection campaigns.

Applying the above mentioned reservoir model to an in-
jection of 1.7 t shows that detection should still have been
possible using the measured schedules. Results are shown in
Fig. 7 for (a) the geometry optimized schedule AM–BN, for
(b) the geometry-optimized schedule AB–MN, and (c) for
the sensitivity optimized schedule. Both geometry optimized
schedules resolve an RI value of approximately 1.1. The AB–
MN configurations better resolve the elongated plume shape,
but also produce erroneous resistivity increases surrounding
the actual CO2 anomaly. The sensitivity optimized schedule
resolves an RI value of 1.3.

Field observations and subsequent inversions showed only
resistivity changes in the sub-percent range. This leads us to
revise the reservoir model as will be outlined below.

4.3 Post-Experiment Evaluation

The horizontal reservoir permeability has been re-calibrated,
such that the pressure increase during the water injection
is about 0.5 bar and during CO2 injection is about 0.3 bar,
which corresponds to the observed values during the brine
injection experiment. The calibrated permeability in the stor-
age horizon is around 1200 mD, which is eight times higher
than initially estimated using the Kozeny-Carman equation.
The horizontal and lateral grid size has been refined to 2.5 m,
for more accurate reservoir simulations. The vertical grid size
is maintained at 1 m. Additionally, the solubility of CO2 in
the formation water is considered in the Eclipse reservoir
simulation.

The revised reservoir simulation aims to reproduce the
field injection as closely as possible. CO2 is injected with the
real injection rate and paused at the weekend. In the simula-
tion the CO2 completely dissolves during the injection free
days. Figure 8a shows the end state of the CO2 injection.
The CO2 plume has a lateral extent of 10 m and a thickness
of 1 m. The maximum CO2 saturation is approximately 0.4.

For comparison, Fig. 8b shows the hypothetical case, if the
originally modeled 23 t of CO2 would have been injected in
a longer field experiment. The lateral extent is comparable
to the original simulation shown in Fig. 3. The thickness is
about one fifth of the original estimate.

To estimate the effect of dissolved CO2 on the bulk elec-
trical resistivity we use the full Archie equation (Eq. 3). Sat-
uration exponent n and cementation exponent m are set to
have a value of 2, which is typically assumed in applications
of the Archie equation for silicate rocks Mavko et al. (2009).
A lower cementation factor might have also been justified for
the unconsolidated sediments at the Svelvik test site. The sat-
uration exponent also can be lower in shale containing sands,
but the effect is diminished for saline waters which can be
found at the test site. In this sense the assumed parameters
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Figure 5. Inversion results for selection criteria. 1000 Configurations have been selected for each configuration ensemble. (a) Geometry
optimized schedule. (b) Sensitivity optimized schedule. (c) Overview/random schedule. Note the adjusted color scale for (a). The Chi2

misfits for the inverion result containning the CO2 plume are (a) 0.11, (b) 0.54, (c) 0.32.

Figure 6. CO2 injection rate during the field experiment. Approximately 1.7 t of CO2 have been injected. (b) Ratio of measured apparent
resistivity between baseline- and subsequent measurements during the CO2 injection. Shown are 168 geometry optimized AB–MN configu-
rations measured on the between wells M3 and M4 (NS axis).

represent an optimistic scenario for the magnitude of the CO2
induced resistivity change.

The amount of dissolved CO2 is calculated by Eclipse
in kgCO2 kg−1

H2O for each model cell. The brine electrical
conductivity is calculated with PHREEQC and the Pitzer
database. Fjord water is simulated as 0.5 % NaCl solution
with a pH value of 7.2 at 8 ◦C. CO2 free Fjord water has an
electrical conductivity of 6 mS cm−1 at temperature of 8 ◦C.
We calculate the fluid conductivity for concentrations of CO2
in discrete steps corresponding to 0.0, 0.1, 0.2, 1, 3, 5, 7,
and 9 bar partial pressure of CO2. We consider two possible
cases:

Case 1 considers the presence of CaCO3 as a solid phase
in the PHREEQC model, which is likely considering the
glaciofluvial-glaciomarine setting. CO2 injection causes the
dissolution of calcite, if present. For equilibrium of the for-
mation water with calcite the additional calcium and carbon-
ate ions cause a higher conductivity compared to calcite free
conditions. In this case the brine conductivity increases con-
siderably from the base value of 6 to 8.7 mS cm−1 for 9 bar

partial CO2 pressure. The solubility for CO2 also increases,
but only slightly by 5 %.

Case 2 assumes no CaCO3 in the formation. In this case
the brine conductivity increases only due to increased car-
bonic acid from 6 to 6.1 mS cm−1.

Figure 9 shows the resulting RI values for 1.7 t of CO2
injection. Figure 9a shows the case for an CaCO3 bearing
aquifer (case 1). A zone of reduced resistivity with RI val-
ues of approximately 0.75 is observed around an area of in-
creased resistivity with RI values of approximately 1.4. Fig-
ure 9b shows the case of a CaCO3 free aquifer (case 2). No
significantly reduced resistivity values can be observed. Peak
RI values are approximately 1.9.

Using the revised reservoir models, numerical data is again
generated for the simulated injection of 1.7 t of CO2 for the
schedules measured during the field experiment. Figure 10
shows the respective inversion results. Panels in the left col-
umn show the case of a CaCO3 bearing aquifer. Panels in the
right column show the results for a CaCO3 free aquifer. Pan-
els show (a, b) geometry optimized AM–BN, (c, d) geometry
optimized AB–MN, and (e, f) sensitivity optimized configu-
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Figure 7. Inversion results using the field schedules on the pre-experiment model for 1.7 t of CO2 injection. (a) Geometry-optimized AM–
BN schedule. (b) Geometry optimized AB–MN schedule. (c) Sensitivity optimized schedule. Note the adjusted color scale for (c). The Chi2

misfits for the inverion result containning the CO2 plume are (a) 0.041, (b) 0.023, (c) 0.315.

Figure 8. (a, b) Slice trough the 3D Eclipse grid at x = 92.5 m, showing the simulated CO2 cell saturation for (a) 1.7 t and (b) 23 t injected
CO2 respectively.

Figure 9. Slice through the 3D reservoir model in terms of resistivity index R/R0 for 1.7 t of CO2 injection. (a) CaCO3 bearing aquifer.
(b) CaCO3 free aquifer.
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Figure 10. Inversion results in terms of the resistivity index R/R0 for 1.7 t of CO2 injection. (a, b) Geometry optimized schedule AM–BN,
(c, d) geometry optimized schedule AB–MN, (e, f) sensitivity optimized schedule. (a, c, e) CaCO3 containing aquifer. (b, d, f) CaCO3 free
aquifer. The Chi2 misfits for the inverion result containning the CO2 plume are (a) 0.135, (b) 0.137, (c) 0.007, (d) 0.005, (e) 0.032, (f) 0.031.

rations respectively. For the case of a CaCO3 bearing aquifer
all three schedules show an effective reduction in apparent
resistivity values. For the geometry-optimized AB–MN con-
figurations the reduction is smaller compared to the other
two schedules. The inversion is not able to distinguish be-
tween the outer zone of resistivity reduction and the increase
in the center of the anomaly. For the case of a CaCO3 bear-

ing aquifer, all three schedules resolve resistivity increases of
approximately 1.03. Again the AB–MN configurations show
the lowest resolved amplitude.
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5 Discussion and conclusions

5.1 Coupled Reservoir- and ERT modeling workflow

We have developed a coupled modeling workflow including
reservoir simulation, petrophysical translation to electrical
properties and geoelectrical forward simulation. This is fol-
lowed by conventional smoothness-constrained inversion of
the process-based synthetic ERT data sets. The conversion
from a structured to an unstructured grid introduces some
interpolation errors, but generally the CO2 distributions are
accurately represented.

5.2 Performance of Selection criteria

The numerical results show that the coupled reservoir and
ERT modeling can improve the understanding of ERT mea-
surement schedule performance in the context of CO2 stor-
age. The presented selection criteria show better imaging per-
formance compared to a pseudo-random overview selection
of configurations, using only a limited number of measure-
ment configurations. The sensitivity optimized schedule pro-
duces the closest reproduction of the CO2 induced resistiv-
ity increase. The geometry optimized schedule is best able
to resolve the spatial extent of the resistivity anomaly, but
resolves lower peak RI value than both other investigated
schedules.

5.3 ERT Imaging at the Svelvik CO2 Field Lab

We have investigated the performance of the selected sched-
ules at the Svelvik CO2 Field Lab, using reservoir models
refined after the experiment. The schedules struggle to re-
solve the more complex resistivity behavior introduced by
the revised reservoir models. For the case of 1.7 t of in-
jected CO2 the schedules only resolve minor amounts of in-
creased resistivity. The smaller thickness of the simulated
CO2 plumes likely plays an important role in the difficulty
to resolve the resistivity anomalies. The potential presence
of carbonates further lowers the predicted magnitude of CO2
induced resistivity anomalies, hindering detection. Given the
small changes resolvable using numerical data, detection of
the small amount of injected CO2 detection using the field
data will likely prove infeasible.

Although the ERT imaging at the Svelvik CO2 Field Lab
so far has not been able to resolve trapped CO2 in the target
aquifer, we have gained better understanding of the test site
through revised reservoir modeling.

The study shows that monitoring small scale CO2 injec-
tions using ERT has challenges associated with it. Accurate
reservoir models can help to better plan such experiments in
the future.
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