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Abstract. Wind power is a vital ingredient for energy sys-
tem transformation in line with the Paris Agreement. Lim-
ited land availability for onshore wind parks and higher wind
speeds over sea make offshore wind energy increasingly at-
tractive. While wind variability on different timescales poses
challenges for planning and system integration, little focus
has been given to multi-decadal variability. Our research
therefore focuses on the characteristics of wind power on
timescales exceeding ten years. Based on detrended wind
data from the coupled centennial reanalysis CERA-20C, we
calculate European long-term offshore wind power poten-
tial and analyze its variability focusing on three locations
with distinct climatic conditions: the German North Sea,
the Greek Mediterranean and the Portuguese Atlantic coast.
We find strong indications for two significant multi-decadal
modes that are identified consistently using two independent
spectral analysis methods and in the 20-year running mean
time series. In winter, the long-term evolution of wind power
and the North Atlantic Oscillation (NAO) are directly linked
in Germany and Portugal. While German North Sea wind
power is positively correlated with the NAO (r = 0.82), Por-
tuguese Atlantic coast generation is anti-correlated with the
NAO (r =−0.91). We evaluate the corresponding potential
for spatial balancing in Europe and report substantial benefits
from European cooperation. In particular, optimized alloca-
tions off the Portuguese Atlantic coast and in the German
North Sea allow to reduce multi-decadal generation vari-
ance by a factor of 3–10 compared with country-level ap-
proaches.

1 Introduction

A fundamental transformation of our energy system towards
renewable energy sources is inevitable (Rogelj et al., 2015).
Wind power is an essential element of this transition: It is
CO2 neutral during operation, costs are competitive (IRENA,
2019), and resource availability exceeds demand substan-
tially (IEA, 2019, p. 50). Offshore wind power outperforms
onshore wind power in some relevant aspects. First, the wind
blows more steadily resulting in a higher number of full load
hours (IEA, 2019). Second, land availability and public ac-
ceptance is less limiting if wind turbines are placed offshore
far away from residential areas. Until 2020 7.5GW offshore
wind power capacity had been installed in Germany and ap-
proximately 25TWh of electricity were generated in 2019
(WindGuard, 2019). Moreover, the German government has
increased its offshore wind power capacity expansion target
by 5 to 20GW in 2030 (BMWi, 2020). The long-term strat-
egy of the European Union includes 240–450GW of offshore
wind power capacity in 2050 (IEA, 2019), such that a bet-
ter understanding of wind power generation variability is of
great interest.

The main technical challenge of wind power integration is
its high variability on many different timescales, from min-
utes (Milan et al., 2013; Anvari et al., 2016; Haehne et al.,
2018) over days, weeks and seasons (Heide et al., 2010;
Staffell and Pfenninger, 2018; Bloomfield et al., 2018) to
years (Collins et al., 2018), decades and multiple decades
(Wohland et al., 2019a). Appropriate forecasts are essen-
tial to cope with short-term variability (Foley et al., 2012),
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in order to control backup power plants (Faulwasser et al.,
2018), to minimize curtailment of wind turbines and redis-
patch (Wohland et al., 2018) and to avoid large deviations of
the power grid frequency (Gorjão et al., 2020). While short
time scales are well explored, less literature is available for
low frequency variability. Earlier studies establish mecha-
nisms through which low frequency climate variability can
induce low frequency variability in wind power generation.
For instance, the troposphere and stratosphere respond to the
low frequency component of the North Atlantic Oscillation
(NAO) as shown in Omrani et al. (2016) and NAO variabil-
ity has been linked with wind speeds and wind power gen-
eration in Great Britain (Brayshaw et al., 2011; Ely et al.,
2013). Further results on natural low frequency variability
of near surface wind speed over Europe have been given in
Bett et al. (2017, 2013).

Wohland et al. (2019a) provide a detailed analysis of such
low frequency modes and their impacts on wind power po-
tential in Germany. They use the multi taper method (MTM)
and report significant multi-decadal variability with a pe-
riod 25 to 50 years. A strong influence of the NAO has been
shown for generation during the winter months. These effects
have a non-negligible influence (approximately±5%) on the
overall lifetime generation of wind turbines and consequently
impact economic performance and investment decisions.

The present study investigates multi-decadal variability
in wind power potential, complementing and extending the
available literature in three ways. First, it focuses on off-
shore wind power while Wohland et al. (2019a) investigated
mainly onshore. Offshore wind conditions are different from
onshore, most importantly wind speeds are higher. It would
thus be conceivable that multi-decadal variability does not
matter offshore if wind speed changes dominantly occur in
the upper part of the wind speed distribution where the tur-
bine is in the rated regime. Second, it uses different statistical
approaches which allow to verify whether earlier results are
robust to methodological changes. Third, it looks at a larger
domain and thereby allows to check whether inter-country
transmission helps to mitigate renewable generation variabil-
ity also on multi-decadal timescales.

2 Methods

Our general approach is to isolate periodic signals from time
series of the twentieth century offshore wind power poten-
tial, using two independent spectral analysis methods and
an adapted noise hypothesis. We compare three different lo-
cations to verify whether multi-decadal variability is a lo-
cal phenomenon and to reveal the impact of large-scale cli-
mate dynamics. Spectral analysis can not answer all ques-
tions as periodic signals can have offsets or may be fully out-
of-phase. We therefore complement our analysis by calcu-
lating long-time running means to gain visual insight and to
improve the interpretation of the spectral results. We provide

Figure 1. Flow chart of the main parts of the data processing. In the
upper part the prepossessing from ECMWF product to wind power
potential time series is shown (blue), in the lower part the different
analysis tools and their products are shown (green and purple).

a flowchart (see Fig. 1) to follow the data processing more
easily.

2.1 Power potential

We compute wind power potential from 1900 to 2010 over
Europe based on the wind components (u, v) from the cou-
pled reanalysis CERA-20C (ECMWF) at a height of 10 m.
CERA-20C is an ensemble reanalysis consisting of 10 mem-
bers with a spatial resolution of 1.125 ◦× 1.125 ◦ and a tem-
poral resolution of 3 h (Laloyaux et al., 2018). We use all
ensemble members even though ensemble spread is limited.

As in Tobin et al. (2016), we assume a wind turbine hub
height of 80 m and calculate hub height-wind speeds from
10 m wind components as

s(t)=
√
u2(t)+ v2(t)

(
80m
10m

)1/7

. (1)

Wind power potential cP is subsequently computed from the
wind speed using a standard power curve (cf. Tobin et al.,
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2016) as

cP(s)=


0 for sin > s ≥ sout,

s3
−s3

in
s3
r s

3
in

for sin ≤ s < sr,

1 for sr ≤ s < sout,

(2)

assuming a cut-in velocity of sin = 3.5 m s−1, a rated velocity
of sr = 12 m s−1 and a cut-out velocity of sout = 25 m s−1. To
isolate the effect of changes in resource availability, we leave
the allocation of wind parks constant over the 20th century.
In other words, we calculate the wind power potential during
the twentieths century that could have been generated from a
fixed wind park setup.

CERA-20C features strong upward trends in wind speeds,
in particular over the oceans (Wohland et al., 2019b). The
trends are linked to the assimilation of marine wind observa-
tions and are likely spurious. We therefore subtract the linear
trend from the wind power potential time series as in Woh-
land et al. (2019a). It was shown before that multidecadal
wind generation variability of CERA-20C, ERA-20C and
20CR is very similar after subtracting the linear trend at least
in Germany (Wohland et al., 2019a), thus justifying the use of
a single reanalyses in this particular case. All three centennial
reanalyses also show the same relationship with multidecadal
winter NAO variability, suggesting that the underlying physi-
cal processes are equally well captured in the de-trended data
sets. Therefore, this study is based on CERA-20C only.

2.2 Definition of the regions

In the German North Sea we use real-world installed ca-
pacities from the Open Power System Database, totalling
4.5GW (OPSD, 2018). Real world data is lacking for the
Greek Mediterranean, hence we follow (Karanikolas et al.,
2011) who provide plausible estimates of suitable wind park
locations and sizes. Wind parks are distributed mainly over
seven grid boxes in the Aegean and capacity totals at 8.3GW.
Short of real world data and good scenarios in the Portuguese
Atlantic Coast, we utilize each grid box in the area 10.25–
11.375◦W and 33.375–41.25◦ N with turbines of 100MW.
As verified later on, the precise siting of the turbines has
negligible impact on multidecadal generation characteristics
(see Fig. 4), justifying the different approaches taken in dif-
ferent regions. In Sect. 3.2, we assume uniform capacities of
100 MW in each grid box as we seek to investigate genera-
tion variability independent of installed capacity.

2.3 Spectral analysis

To gain insight into the statistical properties of the time se-
ries, we use two methods to analyze their spectrum, namely
the periodogram and singular spectrum analysis (SSA). Ad-
ditionally we define a noise model to quantify the signifi-
cance of spectral peaks.

2.3.1 Power spectral density

A periodogram shows the power spectral density (PSD)
of a time series which is the squared Fourier transformed
(Vaughan et al., 2011)

Pxx(ν)=
1

2πN

∣∣∣∣∣N−1∑
n=0

Xne
−iνn1t

∣∣∣∣∣
2

, (3)

where the power spectral density Pxx(ν) denotes the vari-
ance which occurs at a frequency ν for a time series with the
values {Xn : 0≤ n≤N}, length N and temporal resolution
1t .

As usual in real world time series, we expect the wind
potential time series to be a superposition of several (peri-
odic) signals and an underlying stochastic process. When in-
vestigating spectral properties, this means that the spectrum
consists of several peaks plus background noise. The back-
ground together with effects of finite-length time series and
non-sinusoidal signals complicates the identification of real
signals. A test for statistical significance is therefore needed
and we introduce a noise model in the following to which we
apply a χ2-test to quantify the significance of single peaks.

2.3.2 Noise model

White or red noise is often assumed for the background sig-
nal in atmospheric time series analysis. The auto-regressive
process of order 1 (AR(1) process) is the simplest statis-
tical model for a red noise time series (Mann and Lees,
1996). We therefore choose an AR(1) reference process Yt =
81Yt−1+ εt to model red noise contribution of the original
time series Xt . The coefficients 81 and εt are obtained by
the Yule-Walker equations (Kirchgässner et al., 2012, p. 49–
51) and fully determine the process (see Appendix A1 for
details).

2.3.3 Singular spectrum analysis

Singular spectrum analysis (SSA) decomposes a signal in its
eigenmodes and is particularly well suited for relatively short
and noise time series as the wind potential time series we as-
sess. Shortness is to be understood relative to the investigated
time periods of multiple decades. Furthermore SSA enables
detection of non-sinusoidal signals in contrast to Fourier
transformed based analysis since the generating function is
not restricted to sinusoidal functions. The decomposition is
achieved by solving the eigenproblem of the signal’s corre-
lation matrix. Our approach follows Ghil et al. (2002) where
the application of SSA is demonstrated for the Southern Os-
cillation Index. For consistency, we also normalize the time
series by its standard deviation. To focus on long-term vari-
ability, we mute higher frequency variability, including the
seasonal cycle, by resampling from 3 h to annual values. The
window size M is set to 50 years due to the limited sample
size of N = 110 in line with Ghil et al. (2002) suggestion to
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avoid the hard limit of N/M < 1. This reduces the outcomes
of SSA to modes with periods smaller thanM (Vautard et al.,
1992). We choose the singular value decomposition (SVD)
estimate (Broomhead and King, 1986) to calculate the corre-
lation matrix CX (see Appendix A2 for detailed revision).

Diagonalizing CX yields the eigenvalues {λk : 1≤ k ≤M}
which are ranked in decreasing order λ1 ≥ λ2 ≥ . . .≥ λN ≥

0. Each eigenvalue λk of CX corresponds to the variance of
the time series in the direction of the corresponding eigen-
vector ρk , also known as empirical orthogonal functions or
EOFs.

Ghil et al. (2002) also give a noise filtering method for
SSA reported as Monte Carlo SSA (MC-SSA): Basically we
apply SSA to 1000 synthetic time series {Yt } that were gen-
erated by the noise model, in our case it is the AR(1) process
(see Appendix A3). For each synthetic time series, we calcu-
late the correlation matrix CY using SVD and project it onto
the eigenvectors ρk of the real data. Thus each diagonal entry
of the projected matrices is a surrogate of the corresponding
eigenvalue λk of the real data. Eigenvalues within the inner
90 % of the surrogates are rejected as noise, eigenvalues out
of this range are reported as significant signals.

2.4 20 year running mean

Our spectral analysis is complemented by analysing the long
term evolution of wind power potential. Therefore we take
the 20-year running mean of the time series. By averag-
ing over 20 years, high-frequency variability is eliminated
and the long-term evolution can be assessed. This provides
a good proxy for lifetime energy generation since 20 years
roughly correspond to wind turbine life times.

We define a 20-year forward running mean as

G20(t)=

t+20 year∑
t ′=t

G(t ′), (4)

where G(t) denotes the detrended time series and G20(t) is
the 20-year running mean covering the period of 1900 to
1990. Extension beyond 1990 (i.e., mean from 1990 to 2009)
is impossible due to data availability. The seasonal potential
(Gseason

20 (t)) is calculated analougously by using the seasonal
time series instead.

2.5 North Atlantic Oscillation

Following Wohland et al. (2019a) we compare winter North
Atlantic Oscillation (NAO) with the long term evolution.
This yields further insight into the relation of local wind
power potential to the general circulation of the atmosphere.
The NAO dominates climate variability in the North At-
lantic sector, particular in winter, affecting weather as well
as climate allover Europe (Marshall et al., 2001). We refer
here to it as the first principle component of sea-level pres-
sure over the area 20–80◦ N and 90◦W – 40◦ E as detailed in

Figure 2. Wind power potential spectra of three locations in Eu-
rope. Each panel shows the PSD for offshore wind power potential
in the 20th century (blue denotes ensemble mean, gray ensemble
members) in a multi-decadal range: (a) Portuguese Atlantic Coast,
(b) Greek Mediterranean, (c) German North Sea. An AR(1)-process
models the noise and an applied χ2-test gives confidence intervals
of 95 % (dashed) and 99 % (dash-dotted).

Omrani et al. (2016). Our NAO index is computed from sea-
level pressure data from the Hadley Center (Rayner et al.,
2003) over the winter months December, January and Febru-
ary.

3 Results

3.1 Spectral analysis reveals multi-decadal variability

We show the PSD for three separated regions of Europe,
namely (a) the Portuguese Atlantic Coast, (b) the Greek
Mediterranean and (c) the German North Sea (see Fig. 2). All
three reveal significant peaks on multi-decadal timescales.
The strongest peaks occur in Portugal where the periods
P POR

1 ≈ 100 year and P POR
2 ≈ 20 year are statistically sig-
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nificant at the 99 % level. A third peak is visible around
P ≈ 8 years but will not be studied here as we focus on
multi-decadal peaks. While only one 99 % significant peak
exists for the Greek Mediterranean (PGRE

1 ≈ 50 years), there
are two for the German North Sea (PGER

1 ≈ 45 years and
PGER

2 ≈ 10 years). In other words, multi-decadal variability
is a large scale phenomenon that impacts different parts of
Europe differently.

We investigate the evolution in all regions in more detail
which provides further evidence for the existence of multi-
decadal peaks. Focusing on the seasonal evolution in Portu-
gal, the peaks of seasonal PSD (see Fig. 3a–d) support the
periods P POR

1 and P POR
2 . The PSD of summer (b) and win-

ter (d) both show peaks at P POR
1 and P POR

2 . In spring (a), we
observe a mode with period P POR

≈ 50 years which might
be a harmonic of P POR

1 . In winter another significant peak
occurs with a period P POR

3 ≈ 11 years which is not mirrored
in the annual values. The PSD of autumn (c) shows no peaks
that are significant at the 99 % level but there is one which
exceeds the 95 % significance threshold P ≈ 30 years.

In addition, we report the eigenspectrum of the SSA for
Portuguese Atlantic Coast. In Fig. 3e the eigenvalues (EV)
are ordered by their rank and in (f) by the frequency of the
belonging EOF. The structure of the eigenvalues in (e) show
three groups formed by gaps and different slopes. The first
six form a group that carries a large part of the variance
(≈ 33%) despite the small group size and is therefore of
higher interest than the second group (7th–14th EV ≈ 26%
of total variance) or the last group (15th–34th EV ≈ 33% of
total variance). Lower eigenvalues (rank> 34) are indistin-
guishable from noise and consequently rejected by the noise
hypothesis, which is represented by the surrogates and a χ2-
test, providing another reason to focus on high eigenvalues.
A closer look to the frequency ordered EVs (f) shows that the
first and second EV correspond to the frequency ν1 = 0.031–
0.022yr−1 (P ≈ 30–45 years) and the fifth and sixth to the
frequency ν2 = 0.052yr−1 (P ≈ 20 years). While the latter
matches perfectly with P POR

2 , the former hardly fits P POR
1 .

This lacking fit is a consequence of the resolvable frequen-
cies in SSA because a window size ofM = 50 years restricts
the EOFs to frequencies ν ≥ 0.02yr−1. The first and sec-
ond EV consequently correspond to the lowest resolvable
frequency, further validating variability on very long time
scales. Moreover, P ≈ 30–45 years agrees well with the sea-
sonal PSD results in spring and winter (see Fig. 3a) and au-
tumn (see Fig. 3c). The third and fourth EV correspond to a
relatively high frequency ν = 0.333yr−1 (P ≈ 3 years) and
therefore do not contribute to multi-decadal variability.

SSA of German North Sea and Greek Mediterranean con-
firm the reported periods of PSD as well (see Supplement
Figs. S1 and S2). We have refrained from a detailed analysis
of these sites in favour of a more detailed discussion of their
interconnections, because we focus on balancing potential.

3.2 Significant multi-decadal peaks everywhere across
Europe

Whether or not multi-decadal variability affects large areas
determines its system-wide relevance. A PSD investigation
reveals the existence of at least one significant multi-decadal
peak in every grid box in Europe (see Fig. 4). We show in (a)
a map of the maximal amplitude in the multi-decadal range
for each grid box, additionally we give in (b) the variance
of the full time series and in (c) the ratio of both as normal-
ized amplitude. The normalized amplitude quantifies the rel-
ative importance of multi-decadal variability and short term
variability. In (a) the amplitudes located offshore are partic-
ularly high in contrast to those onshore. This clear demarca-
tion of offshore and onshore areas weakens in the normal-
ized amplitudes (c) because high amplitudes coincide with
high variances in some areas (e.g., the North Sea). Both, am-
plitude and normalized amplitude, host a maximum in the
Portuguese Atlantic coast (around 250MWh2). The ampli-
tudes in the German North Sea are lower (around 50MWh2),
and the high variance there is leading to even lower normal-
ized amplitudes. In the Mediterranean isolated higher ampli-
tudes (around 100MWh2) are shown as around the Greek is-
lands in the Aegis. Due to moderate variance in the Mediter-
ranean, the normalized amplitudes reveal isolated areas of
medium height there, too. In order to ensure comparability
between the locations, we have assumed the same capacity
(100MW) for each grid box in this investigation. This distin-
guishes the amplitudes here from those shown in Fig. 2 for
Greek Mediterranean and German North Sea, where we use
capacities of installed or planed power plants (see Sect. 2.2).

3.3 Timing of multi-decadal variability differs vastly
throughout Europe

The 20-year mean confirms that offshore wind power po-
tential in Portuguese Atlantic Coast, Greek Mediterranean
and German North Sea show a similar period in multi-
decadal variability. Nevertheless, their timing differs vastly
(see Fig. 5 for the normalized running mean of winter and
Fig. 6 for the annual values). All three panels in Fig. 5 show
multi-decadal variability with an amplitude of ±6 %–10 %
reaching maxima and minima at least once over the last cen-
tury. The peaks and dips, however, do not occur simultane-
ously: While Portugal shows 8 % above average potential in
1960, Germany is 7 % below average at the same time (a,
c). In fact, the long-term evolution in Portugal is inverse to
the evolution in Germany. This similarity strongly suggest a
common dynamical origin by a larger climate pattern. This
common forcing could be the NAO as high negative/positive
correlations of 20-year mean NAO and Portuguese/German
wind power illustrate (r=−0.91 and r= 0.82, respectively).
The link between NAO and wind potential is less pronounced
in Greece (see Fig. 5b), likely because local and regional ef-
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Figure 3. Spectra of wind power potential for Portuguese Atlantic Coast. The panels (a)–(d) show the PSD of each season (blue denotes
ensemble mean, gray ensemble members). The confidence level of 95 % (dashed) and 99 % (dash-dotted) is given. The panels (e) and (f)
show the eigenspectrum of SSA (blue denotes ensemble mean, gray ensemble members). Eigenvalues are ordered by rank in (e) and by
frequency in (f) with confidence interval given by the inner 90 % of the surrogates and a χ2-test (90 %).

Figure 4. Analysis of multi-decadal peaks in the PSD for each grid point in Europe. (a) The maximum amplitude for multi-decadal timescales
ν < 0.1 yr−1 in comparison to (b) the 3-hourly variance σ 2. (c) The ratio of maximal amplitude and variance give the normalized amplitude.
The shown signals are significant for a 90 % confidence level at least.
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Figure 5. Normalized 20 year running mean in relation to the NAO
anomaly. Blue denotes the normalized 20 year running mean of
wind power generation potential in DJF of the ensemble mean
(grey denotes same for each ensemble member) at three different
locations: (a) Portuguese Atlantic Coast, (b) Greek Mediterranean,
(c) German North Sea. Yellow lines show the 20-year running mean
of the NAO anomaly.

fects play a more important role in Greece compared to large-
scale atmospheric variability over the North Atlantic region.

3.4 Different multi-decadal evolution allows for
efficient balancing

The pronounced timing differences between wind power po-
tential in the individual countries and their relation to the
NAO suggests capability for spatial balancing. To study the
positive effects from combining potential in different coun-
tries through inter country transmission, we define the total
potential (Gtot) of wind turbines in two countries as

Gtot(t,λ)= λG1(t)+ (1− λ)G2(t), (5)

where λ ∈ [0,1] is a mixing parameter that describes the
share of wind parks installed in country 1 and G1,2(t) is

Figure 6. Pairwise combination of 20 year running mean of three
locations. The corresponding location of the 20 year running mean
(dashed blue and yellow) is given in the legend of each panel. The
variance of their combined 20 year running mean Gtot (green) is
minimized in (a) by λopt = 0.42, in (b) by λopt = 0.39 and in (c) by
λopt = 0.36.

the 20-year running mean potential in the countries 1 and 2,
respectively. A simple minimization of the variance of Gtot
yields an optimum mixing λopt. Figure 6 shows total potential
Gtot using λopt and the potential of the individual countries
G1,2. The total potential of the combinations in (a) and (b)
has distinctly smaller variance than the potential of single lo-
cations (by a factor of 3–10). In contrast, combining Greece
and Portugal (c) leaves the variance essentially unchanged.
These different effects on variance can be conceptually un-
derstood: Assuming comparable values for the variances of
both locations Var(G1(t))≈ Var(G2(t))≈ Var(G1,2(t)) and
the optimal values of λ being of the order of 1/2 (λopt ≈ 1/2),
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Table 1. Variances of each location (Var(G1,2)) and their combina-
tions (Var(Gtot)) as shown in Fig. 6.

Var(G1) Var(G2) Var(Gtot)

Germany (G1) and 3.20 5.18 1.02
Greece (G2)

Germany (G1) and 3.20 7.36 0.37
Portugal (G2)

Portugal (G1) and 7.36 5.18 4.12
Greece (G2)

the total variance is reduced to:

Var(Gtot(t,λopt ≈ 1/2))≈
1
2

Var(G1,2(t))

+
1
2

Cov(G1(t),G2(t)). (6)

The values of Var(G1,2(t)) and Var(Gtot(t,λopt)) are given
in Table 1 respectively for the combinations shown in Fig. 6.

The introduced metric in Eq. (6) means that the effec-
tiveness of the variability mitigation depends on the sign of
the co-variance. If the combined 20-year running mean vari-
ance is higher than half of the individual variances, the co-
variance is positive and reinforces the joint variance. This is
true for combining Portuguese and Greek potential (see Ta-
ble 1), where joint variance is higher than half of Portuguese
or Greek variance. However, if the joint variance is smaller
than half of the 20-year running mean variance, which is cor-
rect for balancing between for Greece and Germany as well
as for Portugal and Germany (see Table 1), the co-variance
is negative thus balancing is effective. The joint variance of
Portugal and Germany is a magnitude lower than the vari-
ance in Germany. The joint variance of Greece and Germany
is significantly lower than half of Var(GGer) as well. How-
ever, the benefit through balancing of Germany and Portugal
is substantially higher in comparison.

4 Conclusions

Using a state-of-the art centennial coupled ocean-atmosphere
reanalysis, CERA20C, and correcting for likely spurious
trends due to marine wind speed assimilation, we report sig-
nificant multi-decadal offshore wind potential variability in
Portugal, Greece and Germany. Our results are robust to the
chosen statistical approach as Power Spectral Density, Sin-
gular Spectrum Analysis and visual inspection of long-term
time series reveal consistent results. Portuguese and Ger-
man multi-decadal wind power evolution are strongly cou-
pled with the NAO in winter but with different signs. This
emphasises mitigation potential through inter-county trans-
mission.

In particular, we report two significant multi-decadal
modes at the Portuguese Atlantic Coast indicated by signifi-
cant peaks at periods of P POR

1 = 50–100 years and P POR
2 =

15–20. They occur consistently in both spectral methods. We
report similar modes in the Greek Mediterranean (PGRE

1 =

50 years) and the German North Sea (with PGER
1 = 45 and

PGER
2 = 10 years). Moreover, we demonstrate the existence

of significant multi-decadal modes all over Europe, which
are connected to slowly varying climate patterns, such as the
NAO.

The long-term development of offshore wind potential
shows strong differences, especially between North and
South Europe. While the German offshore potential cor-
relates strongly with NAO (r = 0.82), the Portuguese and
Greek anti correlate (r =−0.91 and r =−0.41, respec-
tively). Furthermore, Portuguese multi-decadal wind power
evolution is inverse to German evolution: a positive NAO
leads to above average potential in Portugal and below aver-
age potential in Germany (each by around 7 %). These differ-
ences allow mitigation of multi-decadal variability through
spatial balancing. In particular, we uncover that combining
Portuguese and German offshore potential reduces multi-
decadal fluctuations around the mean value from ±5% to
only about ±1%. Combining Germany and Greece also re-
sults in a reduction of variability but only to around±2%. In
contrast, combining locations in Portugal and Greece yields
no reduction. Our research therefore suggest that multi-
decadal wind power variability can be tackled with optimized
wind park allocation and inter-country transmission, meth-
ods that were proved effective at synoptic scales (Grams
et al., 2017; Rodriguez et al., 2014). At the same time, lo-
cal solutions to balance generation variability, such as stor-
age (Tröndle et al., 2019), will most likely fail to deliver on
multi-decadal timescales. Inter-country transmission is there-
fore a promising approach for future fully renewable power
systems because it allows stable supply despite multi-decadal
resource fluctuations.
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Appendix A: Details to methods

A1 Auto-regressive process

In general an auto-regressive processes (AR(p)) of order p
could approximate an original time series Xt by a stochastic
process Yt defined by

Yt = εt +

p∑
i=1

8iYt−i, (A1)

where 8i are fixed coefficients which characterize the de-
terministic process and εt is a sample drawn from a Gaus-
sian distribution with zero mean and variance σ 2 (Percival
and Walden, 1993). Note that an AR(p) process is special
case of an AR(p+1) process, where8p+1 = 0. In our spec-
tral analysis an AR(1) process estimates the underlying red
noise. Thus estimating81 an σ 2 fully determine the process.
The corresponding power spectral density SY (ν) of Yt is the
Fourier transformed lag-l auto co-variance γl given as,

SY (ν)=

∞∑
l=−∞

γle
−2πiνl

=
σ 2

1−812cos(2πν)+81
. (A2)

The parameters σ 2 and 81 are obtained by the Yule-Walker
equations (Kirchgässner et al., 2012, p. 49–51). For p = 1
they simplify to

γ0 =
σ 2

1−82
1

γl =
σ 28

|l|
1

1−82
1
, (A3)

where γ0 and γ1 are the auto co-variances of the time series
with lag zero and one.

A2 SVD approach

Following Broomhead and King (1986), the SVD estimates
CX from the trajectory matrix D. The rows of D are theN ′ =
N −M+ 1 lagged M-dimensional vectors {X̃t = (Xt ,Xt+1,
. . ., Xt+M−1) : t = 1, . . ., N −M + 1} of length M given by
sliding a window of sizeM over the time series. In particular
D is given by

D=


X1 X2 · · · XM
X2 X3 · · · XM+1
...

...
. . .

...

XN−M+1 XN−M+2 · · · XN
,

 (A4)

and CX is defined as

CX =
1
N ′

DDT, (A5)

where the superscript T denotes the transpose of a matrix.

A3 MC-SSA

As suggested in Ghil (1997), we construct a time series us-
ing the stochastic process of the chosen noise model (here
AR(1)-process with the parameters given by the Yule-Walker
equation Yt =81Yt−1+εt ) and project this to the eigenstates
of the signal with the SVD approach. This is done by first
calculating the correlation matrix CY of the surrogate time
series Yt as shown in Eq. (A2). And second by multiply with
the eigenvectors {ρk} of the original process Xt to the right
and left of CY :

1= diag
(
(ρ1 · · · ρM)CY (ρ1 · · · ρM)

T
)
. (A6)

Each element of 1 is a surrogate 1i corresponding to an
eigenvalue λi . This projection is repeated 1000 times gener-
ating 1000 surrogates per eigenvalue derived from the same
noise hypothesis.
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Code and data availability. The code is written in Python and
is available upon request to Charlotte Neubacher. CERA20C
reanalysis data is provided free of charge by ECMWF through
a web portal https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/cera-20c (ECMWF, 2019). Wind park loca-
tions of Germany are provided by OPSD through a web portal
https://open-power-system-data.org/ (OPSD, 2018). We have taken
the locations for Greece from Karanikolas et al. (2011). And for
Portugal we utilize each grid box in the area 10.25–11.375◦W and
33.375− 41.25◦N with turbines of 100MW.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/adgeo-54-205-2021-supplement.
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