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Abstract. It is well known that fracture networks display
self-similarity in many cases and the connectivity and flow
behavior of such networks are influenced by their respective
fractal dimensions. In the past, the concept of lacunarity, a
parameter that quantifies spatial clustering, has been imple-
mented by one of the authors in order to demonstrate that a
set of seven nested natural fracture maps belonging to a sin-
gle fractal system, but of different visual appearances, have
different clustering attributes. Any scale-dependency in the
clustering of fractures will also likely have significant impli-
cations for flow processes that depend on fracture connec-
tivity. It is therefore important to address the question as to
whether the fractal dimension alone serves as a reasonable
proxy for the connectivity of a fractal-fracture network and
hence, its flow response or, if it is the lacunarity, a measure
of scale-dependent clustering, that may be used instead. The
present study attempts to address this issue by exploring pos-
sible relationships between the fractal dimension, lacunarity
and connectivity of fractal-fracture networks. It also endeav-
ors to study the relationship between lacunarity and fluid
flow in such fractal-fracture networks. A set of determin-
istic fractal-fracture models generated at different iterations
and, that have the same theoretical fractal dimension are used
for this purpose. The results indicate that such deterministic
synthetic fractal-fracture networks with the same theoretical
fractal dimension have differences in their connectivity and
that the latter is fairly correlated with lacunarity. Addition-
ally, the flow simulation results imply that lacunarity influ-
ences flow patterns in fracture networks. Therefore, it may
be concluded that at least in synthetic fractal-fracture net-
works, rather than fractal dimension, it is the lacunarity or
scale-dependent clustering attribute that controls the connec-
tivity and hence the flow behavior.

1 Introduction

In nature, there are many fracture networks that display
self-similarity such that their geometries may be described
by a single fractal dimension as shown by Barton and La
Pointe (1995), Berkowitz and Hadad (1997) and Roy et
al. (2007). Such fractal dimensions of fracture networks have
been related to their physical properties such as the perco-
lation threshold (Zhang and Sanderson, 1994) and dynamic
processes such as flow and transport (Doughty and Karasaki,
2002). However, it should be noted that two or more fracture
networks with the same fractal dimension often look very
different from each other and such visual differences are at-
tributed to the differences in scale-dependent fracture cluster-
ing (Roy et al., 2010). Any scale-dependency in the cluster-
ing of fractures will also likely have significant implications
for flow processes that depend upon fracture connectivity.

In a continuum percolation model with random line place-
ment, all connectivity is achieved through line interconnec-
tions (X-nodes) and two ends of each line terminated as iso-
lated line tips (I-nodes). In opening-mode fracture systems
many fractures terminate as abutments/splays against other
fractures to form connections with a Y geometry. The topo-
logical connectivity of any fracture network is defined by the
contribution of intersections (X nodes), abutments (Y nodes)
and isolated line tips (I nodes).

While connectivity of a fracture network indicates whether
or not any fluid or tracer will move from one point of the net-
work to another, evaluating the flow response is indispens-
able for understanding how long will it take for a volume of
fluid to move or how much of such fluid can move in a given
time-period. In petroleum related research such responses are
often quantified by the “recovery factor” which is a function
of the displacement mechanism. We use Trace3D, (Datta-
Gupta and King, 2007), a Darcy-based streamline simulator,
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in simulating flow in fracture networks. In order to imple-
ment Trace3D in our research, it is considered that fractures
are highly porous and permeable zones and the matrix has
nearly zero porosity and permeability. This model ensures
that flow occurs only through the fractures.

The concept of lacunarity is based on multi-scale analysis
of spatial or temporal dispersion (Plotnick et al., 1996). In
simple words, characterization of the distribution of spaces
or gaps in any pattern as a function of scale can be achieved
by estimating the lacunarity value. In the case of fracture net-
works, it can be employed to quantify the degree of fracture
clustering at a given spatial resolution as demonstrated by
Roy et al. (2010) who implemented this parameter in dis-
tinguishing between fracture networks with the same fractal
dimension.

In this research, we explore if lacunarity can serve as a
reasonable proxy for the connectivity and flow behavior of
a fractal-fracture network instead of the fractal dimension.
The present study attempts to address this issue by studying
the scale-dependent clustering behavior (lacunarity), connec-
tivity and flow response of a set of synthetically generated
deterministic fractal-fracture patterns. This set of determin-
istic synthetic fractal-fracture models are generated using the
method described in Roy et al. (2007) at different iterations,
i =1 to &, all of which have the same theoretical fractal di-
mension. The connectivity and lacunarity of these networks
are calculated and compared to each other. The fluid recov-
ery values are obtained from simulating flow through these
networks. The results show that differences in clustering at-
tributes lead to differences in connectivity values and flow
behavior, even between networks that may have the same
fractal dimension.

2  Method Development
2.1 Generating Fractal-Fracture Networks

A set of deterministic fractal-fracture networks at different
iterations are generated as described in Roy et al. (2007).
These are essentially a set of Sierpinski lattices that comprise
self-similar line segments as shown in Fig. 1. Three param-
eters are used in generating these lattices: the scale factor,
b, the iteration level, i, and the initial number of un-fractured
blocks, n. As seen in Fig. 1, a sequence of hierarchically frac-
tured patterns are generated by selecting the spatial locations
of the fractured and un-fractured blocks in a deterministic
manner. In our particular case, Fig. 1a is the initiator that di-
vides the entire area into b> = 2% = 4 blocks and Fig. 1b is
the generator that shows how one such block (thus n = 1),
the upper left corner, is left un-fractured and scaled down
versions of the initiator is used for populating the remaining
three blocks. Since this is a deterministic fractal, at each iter-
ation starting from i = 2 (Fig. 1c), the un-fractured block is
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Figure 1. Generating deterministic fractal-fracture networks, initia-
tor (i = 0), generator (i = 1), and i = 2 (modified from Roy et al.,
2007).
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Figure 2. Variation of box-counting fractal-dimension with itera-

tion for networks, i = 1-6 (modified from Roy et al., 2007).

placed at the exact location (upper-left corner in this case) as
in the generator.

All the models described here have the same set of
values for b and n where, b =2, n =1, the theoretical
box-counting fractal dimension, D = log(b> —n)/logh =
log3/log2 = 1.585. Since D is independent of the iteration,
i, all of the patterns have the exact same theoretical fractal di-
mension. The empirical box-counting values of this dimen-
sion as documented in Roy et al. (2007) stabilize at i =3
and closely approximates the theoretical D value as seen in
Fig. 2.

From a visual inspection of Fig. 1 and especially, Fig. 3
it is apparent that as the number of iterations, i is increased
from 1 to 2 and 4 to 6 respectively, the square domain which
remains at the same size, is populated with more and more
fractures. Hence, while the patterns still have the same frac-
tal dimension, the fracture intensity increases with increase
in iteration. This leads to a possible increase in the scale-
dependent clustering attribute of the fracture networks as
well as that in their topological connectivity and hence, the
fluid recovery. These parameters are discussed in some detail
in the next sections.
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Figure 3. Deterministic fractal-fracture networks with iterations, i =4, 5 and 6.

2.2 Scale-dependent Clustering of Fracture Networks:
Lacunarity

Lacunarity is a parameter that characterizes the distribution
of spaces or gaps in a pattern as a function of scale and quan-
tifies the degree of clustering at a given spatial resolution.
In essence, lacunarity is a scale-dependent measure of het-
erogeneity in datasets (Plotnick et al., 1993). Quantifying la-
cunarity as a function of scale can be achieved by using the
gliding-box algorithm (Allan and Cloitre, 1991; Plotnick et
al., 1996). This algorithm slides a window or box of a given
length, r, translated in increments of a chosen unit length
across the pattern. The box-size, r, is generally a multiple of
this assigned unit length. The interrogator box searches for
occupied sites in the pattern at each step and counts them.
The total number of steps, N (r), required to cover the entire
pattern is given by:

N ()= r—r+DE (1

Here, E is the Euclidean dimension of the pattern and r¢ is
the total length of the set. The first and second moments of
the distribution of the number of occupied sites at each step,
Z1(r), and Z,(r) respectively, are given by (Plotnick et al.,
1996):

Zi(r) =s(r) (1a)
Zy(r) =s2(r) + [s(r) (1b)

Here, s(r) and sf(r) are the arithmetic mean and variance
respectively. The lacunarity is then defined as a function of
box-size, L(r), as (Allain and Cloitre, 1991):

L(r)= Z2(r) /1Z1 (") T 2)

A single value for lacunarity, (L) is computed from the val-
ues of lacunarity obtained at different scales, r by log trans-
forming the parameters and applying the following Eq. (3) as
described in Roy and Perfect (2014):

Y llogL(r)-logr]
(L) = S logr 3)
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Figure 4. I (isolated), X (intersection) and Y (abutments) nodes in
a fracture network (Sanderson and Nixon, 2015).

2.3 Connectivity

The topological connectivity is a measure of intersections
of the fracture segments in a fracture network. It can be
computed through a combination of fracture intersections
(X-nodes) and abutments or splays (Y-nodes). Barton and
Hsieh (1989) invoked the use of ternary diagrams to char-
acterize the connectivity, where the relative frequencies of
all three node types: intersections (X-nodes), abutments (Y-
nodes) and isolated line tips (I-nodes) present in a fracture
network system are plotted as a point. Figure 4 illustrates the
X, Y and I nodes present in a fracture network. The connec-
tivity of a fracture network is a useful tool to forecast the fluid
flow and transport characteristics in a fractured reservoir.

Manzocchi (2002) showed that the connectivity can also
be expressed in terms of a single parameter, n, defined by
Eq. (4):

n=[4(1—P)/(1—Px)] “4)

Where, Py =Proportion of I (isolated) nodes, Px = Propor-
tion of X (intersection) nodes, Py = Proportion of Y (abut-
ment) nodes, Px + Py + P = 1.

Adyv. Geosci., 54, 149-156, 2020
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2.4 Flow Response

Evaluating the flow response is key in understanding the im-
portance of fractures in any given network, especially for
hydrogeologists and petroleum engineers. The determinis-
tic fractal-fracture networks are modeled as a grid of 500 x
500 x 1 cells. This is a fracture-continuum model similar to
those described by Langevin (2003), Neuman (2005), Svens-
son (2001) and Tsang et al. (1996), by means of which dis-
crete fractures are converted into permeability structures on a
model grid. This is done in a manner such that each cell gets a
characteristic porosity and permeability value depending on
whether or not it is occupied by a fracture.

In our research, a cell occupied by a fracture is assigned
porosity and permeability of 95 % and 10° md respectively,
whereas all the others (“matrix” cells) have values 5 % and
10% md. These values are chosen so as to ensure that flow oc-
curs only through the fractures. A pair of injection and pro-
duction wells are placed at diagonally opposite corners of
the grid i.e., at (1, 1) and (500, 500) such that there is a total
areal swept of the fluids present in the modelled rock volume.
These models are then flow simulated in Trace3D, a Darcy-
based streamline simulator, at constant boundary conditions
with reservoir pressure of 2480 psi and an injection rate of
500 bbld~! for a period of 1000 d. The overall fluid recovery
values thus obtained from each deterministic fractal-fracture
model is used for parametric characterization of the flow be-
havior.

3 Results and Discussions
3.1 Lacunarity and Connectivity

The lacunarity parameter, (L), which is a measure of scale
dependent clustering, is calculated for the set of eight deter-
ministic fractal-fracture patterns (Table A1 in the Appendix)
and plotted as shown in Fig. 5. Although all the fractal-
fracture patterns have the same theoretical fractal dimension,
the lacunarity value increases with increase in the number
of iterations. The lacunarity, which is a measure of fracture
clustering thus increases because in going from one iteration
to the next higher one, more and more fractures are added
in populating the same domain which increases the fracture
intensity.

The connectivity values of the set of eight deterministic
fractal-fracture patterns are computed (Table A1) and plotted
as shown in Fig. 6. Similar to the lacunarity parameter, the
connectivity also increases with the increase in the number
of iterations and somewhat appears to “stabilize” at higher
iterations. However, at least until i = 8, the connectivity ac-
tually does not “stabilize”. This behaviour is different when
compared with Fig. 2 in Sect. 2.1 where the empirical fractal
dimension of the same patterns stabilizes at iteration i = 3.
This points to the fact that while the empirical fractal dimen-
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Figure 5. Variation of lacunarity with iterations for deterministic
fracture-fractal patterns (i = 1 to 8).
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Figure 6. Variation of connectivity with iterations for deterministic
fracture-fractal patterns (i =1 to 8).

sion stabilizes around its theoretical value (all patterns have
the same dimension), it is not so in the case of the connectiv-
ity. This is because it increases with every iteration as does
the intensity of these fractal-fracture networks.

The differences in the connectivity of these fractal-fracture
networks generated at different iterations can also be demon-
strated in the form of a ternary diagram (Fig. 7) that plots
the relative proportions of I, X and Y nodes of a network
as a point representing the connectivity of that network. As
seen in the figure, an increase in the iteration results in the
formation of a higher relative number of X and Y nodes as
compared to the number of I nodes.

Such an increase in the X and Y nodes relative to I, hence,
the connectivity of fractal-fracture networks, at increasing
iterations is possibly related to the fact that fracture inten-
sity also increases as i goes from 1 to 8. It has been shown
previously that fracture clustering (lacunarity) also increases
with iteration as more and more fractures populate the do-
main whose size remains fixed.

Lacunarity can therefore, be implemented in investigat-
ing possible relationships between clustering and connectiv-
ity by cross-plotting the two parameters. Figure 8 shows an

https://doi.org/10.5194/adgeo-54-149-2020
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Figure 7. Ternary diagram showing connectivity of deterministic
fractal-fracture patterns generated at iterations, i =1 to 6.
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Figure 8. Lacunarity vs. Connectivity plot for deterministic fractal-
fracture patterns (i = 1 to 8).

appreciable positive correlation between these two thus in-
dicating that instead of the fractal dimension which remains
unchanged at different iterations (Fig. 2), it is the lacunar-
ity parameter which can be used as a proxy for connectivity.
From a computational point of view, the prime advantage of
using lacunarity over connectivity lies in the fact that it does
not require maps to be presented in vector formats, in other
words, a simple bitmap figure file (raster data) can be used
for analysis.

3.2 Lacunarity and Fluid Recovery

The fluid recovery obtained by flow simulation of determin-
istic fractal-fracture models increases with increase in the
number of iterations and is positively correlated to lacunarity
as seen in Fig. 9. This can possibly be attributed to the fact
that recovery is directly controlled by connectivity. The latter
in turn, is related to fracture clustering which is quantified by
lacunarity. As the number of iterations increase, more frac-
tures are added that increases lacunarity which leads to better
connectivity that enhances transport of fluid from the injec-
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Figure 9. Lacunarity vs. Recovery plot for deterministic fractal-
fracture patterns (i = 1 to 8).

tion point to the production point of the fractured domain.
This observation thus indicates that instead of the fractal
dimension which remains unchanged at different iterations
(Fig. 2), the lacunarity parameter is better suited to represent
fluid recovery of deterministic fractal-fracture networks.

4 Conclusions

The present research explores if the fractal dimension of a
fractal-fracture network is a unique identifier of network con-
nectivity and its flow properties. It addresses the question
of whether lacunarity, a parameter that quantifies the scale-
dependent clustering of fractures (Roy et al., 2010) in dis-
tinguishing between networks with same fractal-dimension,
can be used instead and studies the influence of clustering
attributes on flow behavior of fractal-fracture networks.

A set of synthetic deterministic fractal-fracture networks
generated at different iterations and having a known theo-
retical fractal dimension, D = 1.585 (Roy et al., 2007) were
implemented in this study. It was found that unlike the em-
pirical fractal dimension that stabilizes at a given theoreti-
cal value, connectivity and clustering (lacunarity) increase
with increasing iterations from i = 1 to 8. A similar trend is
observed when the patterns are flow simulated and the re-
covery factor is compared to lacunarity. This does not come
as a surprise because as seen in Figs. 1 and 3, with increas-
ing iterations more and more fractures are added in the do-
main which leads to higher fracture intensity. The results of
our research point to the fact that the fractal dimension is
not a unique identifier of connectivity or flow properties in
case of such deterministic fractal-fracture patterns. Instead,
it is the clustering of such fracture networks that can be used
to understand the connectivity because there is a reasonable
correlation between the connectivity and lacunarity parame-
ter which quantifies scale-dependent clustering. The positive
correlation between scale dependent clustering and fluid re-
covery bolsters the fact that rather than the fractal dimension
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it is the lacunarity parameter that might be considered for un-
derstanding connectivity and flow response of such fractal-
fracture networks.

Based on our findings with respect to synthetic fractal-
fracture maps, it can be ascertained that the lacunarity pa-
rameter can be used as a proxy for connectivity and is also
an indicator of fluid flow for fracture networks. In order to
test whether this applies to real world fractal-fracture maps,
this study can be extended to a set of natural maps with sim-
ilar fractal-dimension.

Adv. Geosci., 54, 149-156, 2020
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Appendix A

Table A1. Connectivity (n), Lacunarity ((L)) and Fluid Recovery (%) of Deterministic Fractal-Fracture Networks from i = 1-8.

Fractal-Fracture Models  Proportion of

Proportion of

Connectivity Lacunarity  Fluid Recovery

(iteration number, i) X nodes (Px) I nodes (Pr) (n) (L) (%)
1 0.3333 0.5556 2.657 0.058 22.29
2 0.4182 0.3636 4.371 0.061 27.1
3 0.4634 0.2317 5.721 0.065 28.67
4 0.4847 0.1472 6.625 0.075 30.9
5 0.4938 0.0944 7.162 0.085 34.58
6 0.4994 0.0663 7.46 0.091 37.32
7 0.5026 0.0487 7.65 0.093 38.41
8 0.5044 0.0411 7.74 0.098 39.2
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