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Abstract. In this article we analyze the benefit of computing
a combined solution from individual orbit solutions for the
low Earth orbiting satellite Sentinel-3A. The selected combi-
nation scheme for calculating the combined solution is Vari-
ance Component Estimation (VCE). Before a combination
is calculated, the individual orbit solutions are analyzed to
identify systematic differences and characteristics. Simula-
tion studies are performed to show under which conditions a
combined solution of superior quality may be expected. The
combined solution is validated by Satellite Laser Ranging
(SLR) measurements and compared with SLR validations
of the individual solutions. The result of this investigation
shows that VCE, implemented as an iterative procedure, is
suitable to obtain an orbit solution of superior quality for
Sentinel-3A.

1 Introduction

Precise Orbit Determination (POD) of Low Earth Orbiters
(LEO) plays an important role for studies in various fields.
Global Positioning System (GPS) data together with precise
GPS satellite orbits and satellite clock corrections provided
by the International GNSS Service (IGS, Johnston et al.,
2017), data from the French DORIS (Doppler Orbitogra-
phy and Radiopositioning Integrated by Satellite) system or
from Satellite Laser Ranging (SLR) are used to perform LEO
precise orbit determinations. To determine a precise orbit,
a physical model of the orbit is fitted to the corresponding
tracking data. The combination of force models and precise
tracking data, the so-called reduced-dynamic approach, pro-
vides the framework to fulfil the precise orbit requirements
in terms of precision and computation time (Wu et al., 1991).

Nowadays for many LEO satellites with stringent accuracy
requirements, the precise orbits are calculated on an opera-
tional basis. In addition several POD expert centers are also
providing solutions in off-line processings. Since the calcu-
lated reduced-dynamic orbits are based on a physical force
model, different orbits can result if different background
models or different orbit parametrizations are used. The soft-
ware used for the corresponding calculations can also lead to
differences.

The existence of different solutions for one and the same
orbit raises the question if there is a solution that represents
the orbit better than all others do. Furthermore, the question
arises whether a combination of such different solutions can
lead to an orbit of superior quality.

In this article this question is investigated by using the
precise orbit solutions of the satellite Sentinel-3A. Sentinel-
3A forms together with Sentinel-3B a pair of Earth obser-
vation satellites which are part of the Copernicus, or for-
merly GMES (Global Monitoring for Environment and Se-
curity) program (Aschbacher and Milagro-Pérez, 2012). The
European Copernicus Program provides Earth observation
data for environmental protection, climate monitoring, nat-
ural catastrophes assessment and other societal purposes.

Sentinel-3A was launched on 16 February 2016, from the
space port Plessezk with a Rockot sky rocket into a sun-
synchronous orbit at an altitude of about 800 km. The specific
task of Sentinel-3A is ocean observation. It is equipped with
corresponding instruments for this purpose. Besides those, it
is also equipped with two GPS receivers to allow for POD
(Montenbruck et al., 2018) with the goal of 2 cm RMS resid-
ual orbit accuracy (Ferndndez et al., 2016). As part of the
so-called Sentinel POD Quality working group (QWG), dif-
ferent Analysis centers (ACs) are routinely computing or-
bit solutions for Sentinel-3A. From the list of ACs that pro-
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vide these solutions, eight institutions have been selected for
which the solutions will be analyzed in more detail and even-
tually used to generate a combined solution:

GMV (Grupo Mecénica del Vuelo, CPOD solution)

AIUB (Astronomical Institute, University of Bern)

TUM (Technical University of Munich)

CNES (Centre National d’Etudes Spatiales)

TUD (Delft University of Technology)

— EUM (European Organisation for the Exploitation of
Meteorological Satellites)

DLR (German Aerospace Center)

ESOC (European Space Operations Center of ESA)

These institutions regularly provide independent orbit solu-
tions for the Sentinel-3 satellites. They are produced with dif-
ferent software packages and are based on different reduced-
dynamic orbit determination approaches. The orbit solutions
used in this study are based on GPS data only, while other
ACs of the QWG also use DORIS for the POD (GMV,
2018a). SLR data may be used for an independent validation
of the orbits for the Sentinel-3 satellites. Sentinel-3A was se-
lected for this study because within the QWG many different
solutions are provided by the ACs. In addition, Sentinel-3A
has the highest accuracy requirements of the Sentinel satel-
lites and features a Laser Retro Reflector, which makes SLR
validation possible.

Table 1 shows that the parametrizations, especially the to-
tal number of empirical parameters per arc differs very much
when comparing the solutions of the different ACs. In gen-
eral it can be stated that the larger the number of empiri-
cal parameters the less dynamic is the corresponding orbit
determination approach. Those parametrization differences
can reveal biases, e.g. in radial direction, when comparing
the different orbit solutions against each other (Peter et al.,
2017).

The article is structured as follows. In Sect. 2 we will
introduce the framework of Variance Component Estima-
tion (VCE) used to compute combined orbit solutions as a
weighted average of the individual orbit solutions from the
QWG. In Sect. 3 a comparison between the different solu-
tions is carried out. Section 4 deals with simulations, made
to examine the impact of different types of orbit errors when
using VCE. The application of VCE to real orbit solutions of
Sentinel-3A is shown in Sect. 5. In Sect. 6 the combined so-
lutions as well as the individual solutions are validated using
SLR measurements.
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2 Combination strategy

The method used for the combination is based on VCE. The
formulas can be derived from the results presented in Kusche
(2003) and Teunissen and Amiri-Simkooei (2008). The com-
bined solution is computed as a weighted average of the indi-
vidual solutions. The weights of the individual solutions are
a priori unknown and determined using VCE. The positions
of the combined solution are determined independently for
each epoch in this study. The corresponding set of weights is
iteratively determined using daily batches of the individual
orbit solutions. Note that in the adopted procedure correla-
tions between components of the position vector and posi-
tions referring to different epochs are neglected.

The combination is represented, under the above men-
tioned simplifications, by the following formulas (Jean et al.,
2018):

Iteration O:
l n
)?0 = — X,
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In each iteration new weights are thus calculated for each
of the individual solutions. The computation is based on the
weights of the previous iteration and the RMS of the differ-
ence of the individual solution to the combined solution of
the previous iteration. xj represent the individual orbit solu-
tions in the earth-fixed frame. Since the orbital solutions of
the individual ACs are given in 3-D space, x; can be either
interpreted as a one dimensional quantity or as a full position
vector. This results in two possible strategies for the combi-
nation. It would be possible to compute the combination for
each of the spatial directions x; € (X, Y, Z) independently
of the others. With this variant, one RMS would be deter-
mined per spatial direction, per iteration and per solution.
In the other variant, the differences of all spatial directions
are used together and a single RMS is determined per indi-
vidual solution per iteration. Various tests have shown that
generally the version with one weight per solution is better
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Table 1. Main characteristics of the individual solutions (GMV, 2018a).

Software Arc Total number of

length  empiricals per arc

GMV  NAPEOS (Springer et al., 2011) 32h 19
ESOC NAPEOS 3.8 24h 22
AIUB  Bernese GNSS Software 5.3 (Dach et al., 2015) 24h 723
TUD GIPSY-OASIS 6.4 (NASA, 2019) 30h 297
CNES ZOOM 5.8 (Carrou, 1986) 36h 50
EUM  NAPEOS 3.5.1 24h 19
TUM Bernese GNSS Software 5.3 (mod) 30h 291
DLR GHOST 2.1 (Wermuth et al., 2010) 30h 434

suited. In addition, the separation of the three spatial direc-
tions of a solution is questionable, because they are not inde-
pendent of each other. Therefore for each individual solution
one weight per day is iteratively determined. The sampling
for the combined solutions is 60 s. If the procedure is aborted
after one iteration (i = 1), the procedure is similar to the orig-
inal method used for the combination of GNSS satellite or-
bits from different ACs as implemented by the IGS (Beutler
et al., 1995).

Helmert transformations between individual solutions
may be applied prior to the combination in order to reduce
systematic differences between the individual solutions. For
this purpose one solution is selected as a reference solution
and all other solutions are transformed to the frame of the
reference solution. Systematic differences such as offsets, ro-
tations and scale differences can thus be eliminated if nec-
essary. They will be reflected in the corresponding Helmert
parameters. The Helmert transformation matches one set of
orbit positions with another set of orbit positions according
to

{i 1 Y _:3 X;
Yi|=0+w|-y 1 « Y;
i g —a 1 Z;
AX
+[ ar), )
AZ

where X;, ¥; and Z; are the original coordinates and 3(7
Y; and Z; are the transformed coordinates. The Helmert pa-
rameters are a displacement vector with three components
(AX,AY,AZ), a scale factor (1 + ) and a rotation matrix
consisting of three (small) rotation angles («, 8, ) around
the coordinate axes. These parameters are iteratively deter-
mined using the classical non-linear least-squares adjustment
(Watson, 2006).

3 Comparison of individual orbit solutions

Before a combination of the individual solutions is com-
puted, the solutions are mutually compared to each other.
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This serves the purpose to quantify and characterize poten-
tial systematic differences between the individual orbit so-
Iutions. In addition, such comparisons serve to identify de-
graded solutions and to exclude them from the combination
if necessary. As such comparisons are regularly carried out
and published by GMV in the frame of the regular Coper-
nicus POD Service reviews (GMV, 2018b), the comparisons
also serve the purpose of verifying our results. The compar-
ison was performed for the period from 1 January 2017 to
27 January 2018.

Since one may lose track from a cross-comparison be-
tween all solutions, a reference solution is selected and the
differences between this solution and all others are calcu-
lated. The orbit differences, which are given first in the earth-
fixed reference frame used by the sp3 orbit exchange file
format (Remondi, 1993), are transferred to the local orbital
frame defined by the radial, along-track, and cross-track di-
rection. The first comparison is shown in Table 2. No Helmert
transformation was applied and the official Copernicus POD
(CPOD) service solution was used as a reference. Table 2
shows that different solutions may have systematic differ-
ences, e.g. systematic radial biases as already discussed by
Peter et al. (2017) for Sentinel-1. It can also be seen that the
radial mean value between some solutions is small, e.g. be-
tween the GMV and the ESOC orbit solutions. This is also
the case when comparing the GMV to the EUM orbit solu-
tion. This reflects the use of the same software (NAPEOS)
and similar orbit parametrizations by these three ACs. A
small mean value also shows up in the radial direction in
the comparison of GMV and CNES orbit solutions. Accord-
ing to GMV (2018a) both ACs do not make use of empirical
parameters in radial direction and use a similar number of
total empirical parameters per arc (see Table 1) resulting in
a rather dynamic orbit representation. The combination of
small differences and not setting up empirical parameters in
radial direction are an indicator of very similar modelling of
the radial direction by these ACs. A larger systematic differ-
ence, e.g. in radial direction between the GMV orbit solu-
tion and the AIUB orbit solution, reflects the large difference
in total number of empirical parameters (see Table 1). This
shows that GMV’s orbit determination approach yields orbits
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Table 2. Orbit comparison in the local orbital frame, CPOD vs. other solutions, no Helmert transformation applied, average of daily values.

[cm] AIUB TUM CNES DLR TUD ESOC EUM
Radial-RMS 1.28 0.97 0.59 1.05 0.95 0.62 0.72
Along-track-RMS 1.57 1.71 1.52 1.41 1.24 1.32 1.78
Cross-track-RMS 1.20 1.30 0.80 1.29 1.25 1.69 1.46
3-D-RMS 2.35 2.36 1.82 2.19 2.00 2.23 2.41
Radial-MEAN —-0.80 —0.18 0.06 —-0.59 —0.60 0.07 —-0.10
Along-track-MEAN —-0.25 -0.58 -0.52 —-0.01 -0.06 —-0.69 —0.55
Cross-track-MEAN  —0.69 —-0.69 —-0.48 —-0.80 -0.86 —1.32 0.12
3-D-MEAN 1.09 0.92 0.70 1.00 1.05 1.49 0.57
Radial-SD 0.99 0.95 0.59 0.85 0.73 0.61 0.71
Along-track-SD 1.53 1.60 1.41 1.41 1.23 1.23 1.70
Cross-track-SD 0.93 0.98 0.75 0.01 0.89 0.92 1.45
3-D-SD 2.04 2.10 1.71 1.92 1.68 1.65 2.35

of more dynamical stiffness than the AIUB orbit determina-
tion approach, which may be exploited to detect inconsisten-
cies in the adopted antenna phase center offset (PCO) correc-
tions or center-of-mass coordinates (Peter et al., 2017). It can
be stated here that the ACs are essentially divided into two
groups, one group performing a very dynamic orbit determi-
nation approach, and the other one with relatively large to-
tal number of empirical parameters, a more reduced-dynamic
one.

In addition to the SD, which indicates the variability be-
tween orbit solutions, the RMS is calculated as well, because
this value also includes systematic offsets. The RMS is there-
fore well suited to quantify the total differences between dif-
ferent solutions. In order to reduce systematic differences,
a Helmert transformation is carried out before the compari-
son, i.e. before computing the orbit differences, where again
the CPOD solution serves as reference, both for the trans-
formation and for the comparison. In Table 3 the very small
mean values are clearly visible, because the Helmert transfor-
mation reduces by construction systematic biases, rotations
and scale differences. In addition, both SD and RMS became
smaller in all comparisons.

In order to characterize the different types of differences,
the residuals of an example day are plotted in Fig. 1 in along-
track direction. The CPOD solution serves again as refer-
ence. One can clearly see that the differences are not random
but approximately once-per-revolution periodic.

Figures 1 and 2 furthermore reveal that differences involv-
ing orbit solutions computed with the Bernese GNSS Soft-
ware (Dach et al., 2015) show a high-frequency noise in the
along-track direction. This effect is a pure artefact of the
Bernese GNSS solutions (AIUB, TUM). If these solutions
are included in the combination, this problem will smear on
the combination.

The problem is related to the use of the Modified Julian
Date (MJD) as time argument when accessing the positions
of the numerically integrated reduced-dynamic orbits in the
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Figure 1. Along-track differences between individual solutions and
CPOD solution for 24 September 2017, no Helmert transformation
applied.

Bernese GNSS Software. It can be easily cured when orbit
positions are requested at integer seconds as it is the case for
Sentinel-3A (see Fig. 3).

The example of the outlined epoch problem of orbit solu-
tions computed with the Bernese GNSS Software underlines
that a rigorous examination of the individual solutions needs
to be performed first and potential issues should be sorted out
before computing a combined solution. Otherwise artefacts
of an individual solution will propagate into the combined
solution.

4 Simulation study

In this section we investigate the reduction of different error
types in the combination.

4.1 Random errors

First we assess the benefits of VCE when combining orbit
solutions affected by different levels of white noise. For this
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Table 3. Orbit comparison in the local orbital frame, CPOD vs. other solutions, average of daily values.
[cm] AIUB TUM CNES DLR TUD ESOC EUM
Radial-RMS 0.81 0.71 0.53 0.82 0.62 0.56 0.70
Along-track-RMS 1.40 1.40 1.29 1.38 1.14 1.18 1.68
Cross-track-RMS 0.91 0.97 0.70 0.98 0.87 0.91 1.44
3-D-RMS 1.85 1.84 1.56 1.88 1.56 1.59 2.32
Radial-MEAN —545x 1077  —247x1078  844x1070 —542x107° —1.74x107 573x1075  1.19x 107
Along-track-MEAN 279 x 10™% —2.12x 107> —2.01x107%  297x107%  155x10™* —8.02x107° 1.11x1073
Cross-track-MEAN 227x107%  1.98x1073  698x1073 —1.84x107> 1.55x 1073 5.11x1073 8.10x 1073
3-D-MEAN 3.64x 1074 1.98x1073  698x1073  3.02x107%  155x1073  511x1073 8.17x1073
Radial-SD 0.81 0.71 0.53 0.82 0.62 0.56 0.70
Along-track-SD 1.40 1.40 1.29 1.38 1.14 1.18 1.68
Cross-track-SD 0.90 0.97 0.70 0.98 0.88 0.91 1.44
3-D-SD 1.85 1.84 1.56 1.88 1.56 1.59 2.32
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Figure 2. Epoch problem revealed by the comparison of AIUB versus CPOD solution in the along-track direction.
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Figure 3. Comparison of different AIUB solutions versus CPOD
solution in the along-track direction.

purpose four solutions are simulated, where the true orbit is
assumed to be zero for the sake of simplicity. To each of
the solutions we add white noise with an expectation value
of zero and a specific standard deviation of 0.5, 1, 2 and
3 cm, respectively. The four solutions are then combined with
VCE. In order to asses the quality of the combined solution,
we examine the differences with respect to the true solution
and compute its standard deviation. In addition, the results
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after the first iteration and after the tenth iteration are com-
pared. Figure 4 shows the different time series over 24 h.

Figure 4 shows that the combination with VCE works per-
fectly well in this scenario as to be expected. It is notewor-
thy that after one iteration the standard deviation of the com-
bined solution may be still larger than that of one specific
single solution due to the different noise levels of the individ-
ual solutions. After several iterations, however, the combined
solution outperforms all individual solutions when adopting
VCE.

Nowadays, the IGS routinely calculates a combined solu-
tion for the orbits of GNSS satellites. The original combi-
nation method differs from the one used in this study in de-
termining the weights according to wy ; = l/RMS(dk,i_1)2.
A comparison of the two combination strategies is shown in
Figs. 4 and 5. It can be seen that if the weighting corresponds
to that originally used by the IGS, the combined solution will
converge to the best of the individual solutions but not to a
superior solution. Only when adopting the VCE scheme, the
combined solution converges towards a solution of superior
quality. Note that both schemes are equivalent if the combi-
nation is truncated after the first iteration.
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Figure 4. Combination of solutions affected by white noise using
the weighting scheme given by VCE.
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Figure 5. Combination of solutions affected by white noise using
the weighting scheme adopted by the IGS.

4.2 Systematic errors

In Sect. 3 it was shown that real orbit solutions are affected
by systematic, in particular by periodic differences. In order
to investigate the behaviour of VCE when combining solu-
tions affected by systematic, periodic errors, additional sim-
ulations are carried out. For this purpose orbit solutions are
simulated which are characterized by once-per-rev periodic
errors with different amplitudes and phases. The errors are
simulated according to

fi() = Aj - sin(w -t + ¢i), 3)

where w denotes the angular frequency of the orbital period
of about 90 min for a LEO satellite, A; the specific ampli-
tudes of the simulated errors and ¢; their phases. The indi-
vidual solutions affected by the periodic errors from Eq. (3)
are then combined using VCE as shown in Fig. 6.

In order to investigate the impact of phase differences to
the quality of a combined solution, three individual solutions
were simulated with a periodic error of identical amplitudes.
Two of the three phases were constructed with the same dif-
ference to the third phase (once positive and once negative).
Figure 7 shows the amplitude of the combined solution as a
function of the phase difference. The error of the resulting
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Figure 6. Simulation of orbital errors with different amplitudes and
phase shifts and their impact on the variance component estimation.
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Figure 7. Resulting amplitude of error of combined solution with
different phase shifts when using three individual solutions for the
combination.

combination with respect to the true solution is plotted as a
function of the mutual phase difference (A¢) between the
simulated periodic errors. A minimum is clearly visible. The
exact position of the minimum depends on the amplitudes of
the simulated errors of the individual solutions. In general,
the simulation shows that the larger the phase shifts between
the individual solutions, the smaller the amplitude of the er-
ror of the combined solution. The result for three individual
solutions shown in Fig. 7 can be generalized to any number
of solutions (not shown). The minimum approximately oc-
curs at Ag; j = 2m/n,Vi, j € k, where n denotes the number
of solutions.

In further simulations, three individual solutions were gen-
erated with both their relative phases and amplitudes being
chosen randomly. Based on this the ratio between the ampli-
tude of the error of the combined solution (A.) and the square
root of the sum of the amplitudes squared of the errors (Aor)
of the individual solutions is determined. Figure 8 shows this
ratio (Ac¢/Awt) as a function of the mean phase difference.
The same pattern as in Fig. 7 can also be seen here, which
allows to draw two conclusions. On the one hand, the ampli-
tude of the error of the combined solution is always smaller
than the square root of the sum of the amplitudes squared
of the errors of the individual solutions. On the other hand,
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Figure 8. Simulations of combination of solutions affected by peri-
odic noise.

Fig. 8 shows that for increasing the mean value of the phase
differences, the probability of an additional improvement for
the combined solution increases as well.

From the results of the simulations it can be concluded that
VCE will still be able to reduce the errors observed in real or-
bits even though they are not random but periodic. In order
to generate combined solutions from real data, which ultima-
tively shall be of better quality than the individual solutions,
periodic orbit errors need to fulfil the above mentioned crite-
rion regarding the phase shifts.

To further investigate this, the phases of the differences
of individual real orbit solutions are determined by Fourier
analysis. This analysis confirms that all solutions have indeed
different phases with non-zero mean (not shown). However,
the exact mean value of the phase differences varies greatly
from day to day. From this result and from the simulation it
can be concluded that VCE will be able to reduce the periodic
errors observed in real orbit solutions.

5 Application of VCE to real orbit solutions

Since VCE is an iterative procedure, we have to deter-
mine how many iterations are necessary until convergence is
reached. To determine this number, real Sentinel-3A orbit so-
lutions from the QWG were combined with VCE. The RMS
of the individual solutions to the previous combination was
determined in each iteration, according to Eq. (1). Figure 9
shows the values as a function of the number of iterations for
the example day 24 September 2017. It was found that the
combined solution changes only marginally after eight iter-
ations. Figure 10 shows the corresponding weights with in-
creasing number of iterations for this example day. In Fig. 9
it can be seen that the RMS stabilized after several iterations.
The same can be seen in Fig. 10 for the weights. We therefore
set the number of iterations to ten for the combined solutions.

VCE is applied to the individual solutions of the period
from 1 January 2017 to 27 January 2018. In this time se-
ries each individual solution receives one weight per day. The
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Figure 9. RMS of solutions as a function of number of iterations.
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Figure 10. Weights of solutions as a function of number of itera-
tions.

mean values of the weights for the analyzed time series are
given in Table 4. No Helmert transformation was applied for
this test. Table 4 shows that TUD gets the highest weight
on average. It is of interest if the solutions with the high-
est weights on average are also the ones which represent the
most accurate orbits. This will be addressed by validating the
orbit quality of all solutions with independent SLR data (see
Sect. 6).

In total ten different combinations are calculated for each
day of the analyzed time period. Two combinations were
computed without Helmert transformation; one aborted after
one iteration and the other one aborted after ten iterations.
The other eight combinations are each performed with a pre-
vious Helmert transformation, where one of the eight solu-
tions served as the reference solution to which the other so-
lutions were transformed by a Helmert transformation. Those
combinations were also aborted after ten iterations.

Some ACs do not provide solutions for manoeuvre days.
In addition, it may be possible for other reasons that an indi-
vidual solution is not provided for some days. For the combi-
nation, a solution was determined using the solutions existing
of the respective days. The amount of non-existent data over
the period examined is only 2.3 %. Due to this small percent-
age, it is assumed that the neglect of these missing days for
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Table 4. ACs sorted according to the highest weights in average.

AC TUD DLR AIUB TUM ESOC CPOD CNES EUM

Weight 0246  0.176

0.150  0.139

0.085 0.083 0.077 0.044

the statistics of both the comparison and the SLR validation
is irrelevant.

6 SLR validation

Sentinel-3A is equipped with a Laser Retro Reflector (LRR)
which allows SLR tracking of the satellite by the station
network of the International Laser Ranging Service (ILRS,
Pearlman et al., 2002). Since all individual solutions are
calculated with the same set of GPS observations, an inde-
pendent technique like SLR is required for orbit validation.
This guarantees that the solutions are not prone to biases
that affect all individual solutions in the same way, e.g., in
the radial direction, which would not be noticed in a cross-
comparison (GMV, 2018b). SLR is primarily, although not
exclusively, sensitive to the radial direction. Additionally, in
order to independently validate if VCE, especially as an it-
erative method, is advantageous for the combination of dif-
ferent LEO orbit solutions, SLR measurements can be used.
SLR residuals are therefore computed for the combined so-
lutions as well as for the individual orbit solutions of each
AC. The SLR validation was performed using the Bernese
GNSS Software. The validation was performed for the en-
tire time period from 1 January 2017 to 27 January 2018.
For the validation of the SLR measurements, only observa-
tions from a subset of well performing stations were used:
The list of accepted stations was compiled on the basis to
externally determined quality of the measurements (GMV,
2018b, Table 5). A threshold of 20 cm was set for the resid-
ual outlier detection. Table 6 shows the statistics of the SLR
validation. The number of accepted measurements per day
are mostly between 50 and 250. It is worth mentioning that
the number of rejected observations for most days is zero.
For days on which manoeuvres took place no validation is
performed. The combined solutions (VCE) shown in Table 6
were determined without a previous Helmert transformation.
The subscript denotes the number of iterations for the com-
bined solutions.

Table 6 shows that the standard deviation (SD) of the com-
bination is smaller than the SD of any of the individual so-
lutions. This underlies the superior quality of the combined
solution. It is also noteworthy that the mean value of the com-
bined solution is, however, not the smallest, but rather repre-
sents a weighted average of the mean values of the individual
solutions. However, one has to keep in mind that, due to po-
tential inconsistencies in the satellite geometry, the best orbit
solution might not show the smallest mean value for the SLR
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Table 5. SLR stations from which the observations were used with
corresponding number of accepted observations for the investigated
time period.

# Location Total number
of accepted

observations

7090  Yarragadee, Australia 18317
7105  Greenbelt, Maryland 6268
7119 Haleakala, Hawaii 2470
7501 Hartebeesthoek, South Africa 1714
7839  Graz, Austria 6246
7840  Herstmonceux, United Kingdom 4006
7841  Potsdam, Germany 5146
7941 Matera, Italy 3443
8834  Wettzell, Germany 2083

Table 6. SLR validation of individual solutions and the combined
orbit by using VCE.

[cm] AIUB CPOD TUM CNES  DLR
MEAN —0.61 —0.07 —027 —0.05 —0.45
SD 116 123 132 138 1.17
RMS 1.31 123 135 138 1.26

TUD ESOC EUM VCE; VCEj
MEAN -054 003 -028 -032 —0.36
SD .10 127 169  1.03 1.03
RMS 1.23 128 171  1.08 1.09

residuals. To avoid mixing the levelling of individual solu-
tions in the combined solution, a Helmert transformation of
the individual solutions w.r.t. one reference solution can be
performed prior to the combination. It is also evident that the
mean value and the RMS assume larger values as the number
of iterations increases, but not the SD.

Table 7 presents the SLR validation with one solution serv-
ing as a reference when adopting a Helmert transformation
prior to the combination. If no solution was calculated for
such a reference solution for a specific day, no combined so-
lution was determined.

It is noteworthy that the standard deviation only becomes
smaller than in Table 6 for the combination where DLR is
chosen as a reference orbit. In all other combinations, the
standard deviation is larger than when no Helmert transfor-
mation is applied but smaller than the standard deviation of
the corresponding (reference) individual solutions.
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Table 7. SLR validation of combined orbit solutions by using variance component estimation with previous Helmert transformation.

[cm] AIUB CPOD TUM CNES DLR TUD ESOC EUM
MEAN -0.66 -0.09 -025 -0.11 -047 -052 —-0.04 -0.17
SD 1.07 1.12 1.25 1.25 0.99 1.03 1.12 1.25
RMS 1.26 1.12 1.27 1.26 1.10 1.15 1.12 1.26

Table 8. SLR validation of combined orbit computed by GMV
(COMB) and combined solution using variance component estima-
tion (VCE ).

[cm]  COMB VCE
MEAN  —031 —0.36
SD 1.15 1.08
RMS 1.19 1.14

Why the DLR orbit solutions used as reference for a prior
Helmert transformation leads to the best combined orbit so-
lution, in terms of SD of SLR residuals, can not be answered
conclusively. One possibility could be that the number of em-
pirical parameters in the computation of this solutions is a
good compromise between dynamic and reduced-dynamic
orbit determination approach. In Table 4, however, it can
be seen that the combination scheme (VCE) gives a high
weight to the DLR solution on average. Also the combined
solution with TUD as reference, which receives the highest
weight in average, shows a comparatively small SD of the
SLR residuals. The reason for this high weight is the good
agreement of the TUD solution to all the other solutions in
cross-comparisons (not shown). If therefore a combined or-
bit solution is to be computed, a reference solution should
be selected from which it is known that it has a small mean
value in the SLR residuals and then a combined solution with
previous Helmert transformation should be carried out using
VCE to further improve the SD. If no such reference solu-
tion is known, no Helmert transformation should be carried
out before performing a combination. Additionally the orbit
solution which gets the highest weight in this combination
procedure (without prior Helmert tranformation) can be used
as reference for a Helmert transformation for another com-
bined solution, to further improve both the mean and SD
of the SLR residuals. If it is known that one of the solu-
tions is significantly worse than the other solutions, e.g. by
a translation, it should be included anyway, since when not
carrying out a prior Helmert transformation, the combination
scheme will strongly decrease the weight of this solution. If
a prior Helmert transformation is carried out in this scenario
the translation will be compensated and the initially worse
solution can contribute to the combined solution.

GMYV is also operationally computing a combined orbit
solution (COMB) from the orbit solutions of the individ-
ual ACs, but in this combination the weights are determined
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Table 9. Comparison of SLR SD (increasing) to average weights
(decreasing).

AC SLRSD AC Average weight

VCE 1.03 - -
TUD 1.10 TUD 0.246
AIUB 1.16 DLR 0.176
DLR 1.17 AIUB 0.150
CPOD 123 TUM 0.139
TUM 1.32  ESOC 0.085
ESOC 1.27 CPOD 0.083
CNES 1.38 CNES 0.077
EUM 1.69 EUM 0.044

according to w; = 1/median(dy). This combination is com-
puted with a prior Helmert transformation. The SLR valida-
tion in Table 8 shows that the combination computed using
VCE has a smaller standard deviation and a slightly larger
mean value than the combination computed by GMV. Di-
rect orbit comparisons of the combined solution computed
by GMV and the combined solution computed using the pre-
sented combination method reveal a 3-D RMS of 0.49 cm for
the time period from 27 January to 18 May 2019.

In order to illustrate that the weights assigned by the VCE
algorithm generally nicely correspond to the actual orbit
quality, we show the average weights, after the 10th iteration
of the combination procedure without prior Helmert transfor-
mation, together with the average SD of the SLR validation
in Table 9. Since the values in both the columns are deter-
mined completely independent of each other, the coincidence
of the order of the ACs is a very strong indication that using
VCE as combination scheme is advantageous for computing
combined orbit solutions for Sentinel-3A.

Varieties between different combined solutions, obtained
by using different reference solutions, are analyzed. The dif-
ferences in such comparisons look similar to differences in
comparisons between individual solutions unless a Helmert
transformation is performed beforehand. When performing
a Helmert transformation before the comparison, the differ-
ences of combined solutions vanish to a large extent, see
Fig. 11. This implies that the combined solutions with previ-
ous Helmert transformation differ mainly by a rotation, scal-
ing and translation.
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Figure 11. Along-track differences between combined solutions
(reference EUM and DLR) for 24 September 2017.

7 Conclusions

The method of variance component estimation can be suc-
cessfully applied to the combination of precise orbit solu-
tions of the Sentinel-3A satellite computed in the frame of the
POD Quality Working Group. It could be shown that the SD
of the SLR measurements is further improved by the com-
bination process, which is a good indicator for the superior
quality of the combined solution. However, the mean value
of SLR residuals is worse than for some of the individual
solutions when not applying a Helmert transformation. An
attempt was made to eliminate systematic differences before
the combination by making use of a Helmert transformation
before performing the combination with VCE. It turned out
that the combination by VCE in this case shows a smaller
SD of the SLR residuals than the individual solutions used
as reference. Both the simulation of the periodicities and the
values of the SLR validation for the mean value and RMS
show that more than one iteration can also be disadvanta-
geous in the presence of systematic errors. By performing a
Helmert transformation before the computation of the com-
bination it is possible to reduce the mean value to a large
extent if a solution is chosen as reference which has a small
mean value in the SLR validation itself. Since the simula-
tions with solutions affected by white noise showed that a
increasing number of iterations is advantageous and due to
the fact that by performing a previous Helmert transforma-
tion the mean value of the SLR residuals can be controlled, it
can be stated that making more than one iteration is advanta-
geous and should therefore be done to get an orbit of superior
quality. The magnitude of the improvement of the combined
solution over the individual solutions is at least 6.4 %, which
is considered as relevant.

The order of the ACs in terms of SLR SD and weights
given by VCE is very similar. One can see that the ACs which
receive on average the highest weights are also the ones with
the smallest standard deviations in the SLR validation. It is
encouraging to see that the weights reflect the SLR valida-
tion. From this it can be concluded that the combined solu-
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tion converges to a superior solution in most cases. In our
opinion the findings are well transferable to other satellite
missions.

Further improvements of the combination method are con-
ceivable, e.g. with regard to the correlated spatial directions
and correlations in time.
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