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Abstract. Digital spatial data always imply some kind of
uncertainty. The source of this uncertainty can be found in
their compilation as well as the conceptual design that causes
a more or less exact abstraction of the real world, depending
on the scale under consideration. Within the framework of
hydrological modelling, in which numerous data sets from
diverse sources of uneven quality are combined, the various
uncertainties are accumulated.

In this study, the GROWA model is taken as an example
to examine the effects of different types of uncertainties on
the calculated groundwater recharge. Distributed input errors
are determined for the parameters’ slope and aspect using a
Monte Carlo approach. Landcover classification uncertain-
ties are analysed by using the conditional probabilities of a
remote sensing classification procedure. The uncertainties of
data ensembles at different scales and study areas are dis-
cussed.

The present uncertainty analysis showed that the Gaussian
error propagation method is a useful technique for analysing
the influence of input data on the simulated groundwater
recharge. The uncertainties involved in the land use clas-
sification procedure and the digital elevation model can be
significant in some parts of the study area. However, for the
specific model used in this study it was shown that the pre-
cipitation uncertainties have the greatest impact on the total
groundwater recharge error.

1 Introduction

The fact that digital spatial data always imply some kind of
uncertainty has been an important topic in information sci-
ence for over a decade (e.g. Goodchild and Gopal, 1989;
Burrough and McDonnell, 1998). The source of this uncer-
tainty is their compilation as well as the conceptual design
that causes a more or less exact abstraction of the real world
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depending on the scale under consideration. These uncer-
tainties are on the one hand of a spatial nature (geometri-
cal uncertainty) and on the other hand of a numerical nature
(thematic uncertainty) (Guptill and Morrison, 1995). Geo-
metrical uncertainties are due to errors and impreciseness of
the vector geometries of the digital cartography. Thematic
uncertainties can be subdivided into qualitative and quanti-
tative uncertainties. The former arise from the determina-
tion of a set of potential object types in a limited number of
classes. An example of this is the probability classification
method often used in remote sensing. Quantitative uncertain-
ties refer to measurement or interpolation inaccuracies (e.g.
precipitation).

Within the framework of hydrological modelling, in which
numerous data sets of diverse sources, different thematic and
uneven quality are combined, a superposition of the single
uncertainties takes place (Moore, 1996). Therefore, a full in-
tegration of the data uncertainties into the model system is a
prerequisite in order to achieve an assessment of the uncer-
tainty of the model results due to input data uncertainties.

In this study, the Gaussian error propagation method (Bev-
ington and Robinson, 1991) is used to determine the error of
a calculated quantity by estimating the influence of the differ-
ent uncertainty factors. In the present paper it is shown how
the Gaussian error propagation method can be integrated in
hydrological models in order to evaluate the influence of data
uncertainties on the model results. In this study, the thematic
uncertainties are quantified. The GROWA model (Kunkel
and Wendland, 2002) is taken as an example and the effects
of different types of uncertainties on the calculated water bal-
ance are discussed for different scaled data ensembles and
study areas.
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Table 1. Databases for the groundwater recharge calculation at different scales.

Microscale Mesoscale Macroscale

Precipitation and
potential evapotranspira-
tion

Interpolated grid
(10 m resolution)
German Weather Service

Interpolated grid
(25 m resolution)
German Weather Service

Interpolated grid
(50 m resolution)
German Weather Service

Soil BK50 (1:50 000)
Geological Survey NRW

BK50 (1:50000)
Geological Survey NRW

BK50 (1:50 000)
Geological Survey NRW

Hydrogeology HK25 (1:25 000)
Environmental State Agency NRW

HK100 (1:100 000)
Geological Survey NRW

HK100 (1:100 000)
Geological Survey NRW

Landcover Landsat 7 ETM+
(14.5 m resolution)
US Geological Survey

Landsat 7 ETM+
(14.5 m resolution)
US Geological Survey

Landsat 7 ETM+
(28.5 m resolution)
US Geological Survey

Digital elevation model DGM5 (10 m resolution)
Land Surveying Office NRW

DGM50 (25 m resolution)
Land Surveying Office NRW

DGM50 (50 m resolution)
Land Surveying Office NRW

 

 

 
Fig. 1: The three test sites Saubach [1], Inde [2] and Rur and Erft [3] and the distribution of 

unconsolidated and consolidated rock regions in the research area. 

 

 
Fig. 2: The uncertainty of the hillslope map (left) and of the aspect map (right) for the 
macroscale study area.  
 

Fig. 1. The three test sites Saubach [1], Inde [2] and Rur and Erft [3]
and the distribution of unconsolidated and consolidated rock regions
in the research area.

2 Study area

The area under investigation is located in the west of Ger-
many, in the south-western part of the Federal State of North
Rhine-Westphalia (NRW) (Fig. 1). This area was selected
in particular from the perspective that the greatest possible
variability of natural resources should be represented, which
are then also reflected in the data availability, resolution and
quality.

The area under investigation comprises the catchment ar-
eas of the rivers Rur and Erft, which are direct tributaries

of the Meuse (Rur) and the Rhine (Erft). The area is situ-
ated in the transition region between the Rhenish slate moun-
tains and the northern outliers of the Lower Rhine Basin and
extends beyond the national boundaries of Germany itself.
More than half of the entire catchment area of the Rur River
is covered by consolidated rock, whereas the catchment area
of the Erft river only has solid rock on its southern bound-
aries.

The uncertainty evaluation is performed for three different
scales (micro-, meso-, macroscale). Three study areas of dif-
ferent sizes were selected, where the smaller catchment areas
are part of the bigger ones (see Fig. 1): the catchment areas
of the River Rur and River Erft (4125 km2), catchment area
of the River Inde (353 km2) and the catchment area of the
small Saubach brook located northeast of Aachen (16 km2).

3 Data

The data sets used for this study are incorporated in a stag-
gered resolution corresponding to the individual scale ranges
(see Table 1). As far as possible, appropriate data sets of the
considered scales were used. If no appropriate data set for
the treated scale was available, the usability of data sets of a
higher scale was investigated.

The uncertainties in the data sets have to be estimated
since exact error specifications are hardly available. There-
fore, special methodologies have to be applied in order to get
a reliable estimation of the data uncertainties. The Monte
Carlo methodology is an appropriate way to assess qualita-
tive uncertainties of spatial data sets (Endreny and Wood,
2001). For example, an absolute accuracy value of 5 m is
given for the digital elevation model DGM50 (Land Survey-
ing Office NRW). Since the GROWA model needs slope and
aspect as input parameters, it is important to know how the
error of the digital elevation model propagates to the slope
and aspect map. Therefore the error propagation is analysed
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Fig. 3: Landcover classification of the macroscale study area (left) and the corresponding 
conditional probabilities of the supervised classification procedure. 
 
 

 
Fig. 4: Groundwater recharge in the macroscale study area (left) and the corresponding 
uncertainties (right). 
 

Fig. 3. Landcover classification of the macroscale study area (left) and the corresponding conditional probabilities of the supervised classifi-
cation procedure.

by generating 200 stochastic realisations of the uncertain
DEM. This is done by taking for each grid cell a random
number drawn from an error probability distribution with a
standard deviation of 5 m. For each realisation a slope map
is calculated, it is thus possible to calculate the standard de-
viation for all locations (Fig. 2, left). The aspect uncertainty
is derived accordingly (Fig. 2, right).

In order to assess qualitative uncertainties a different ap-
proach has to be applied. For example, in this study the land-
cover is categorised from LANDSAT 7 data using a feed for-
ward neural network procedure (Fig. 3, left). This method
is used in remote sensing in order to group each pixel of
a satellite image into categories representing different spec-
tral classes which are subsequently related to landcover cat-
egories. One important advantage of the neural network pro-
cedure is that no information about the class-specific proba-
bility distribution is needed, i.e. the frequency of grey values
in a class need not be normally distributed (Canty, 1999).
In such a supervised classification procedure the conditional
probabilities (Fig. 3, right) are given as a by-product and,
thus, can be used as an error matrix (Heuvelink, 2002).

The landcover category with the highest classification
probability is water (on average 98.8%) whereas grass-
land shows the lowest classification probability (on average
86.3%). In order to evaluate the propagation of the landcover
classification uncertainty on the groundwater recharge calcu-
lation two different simulations are compared. In the first
simulation the standard classification result is used and in
the second conditional probabilities are used instead. Table 2
lists the averaged uncertainty values of landcover classifica-
tions and the slope and aspect maps used in this study.

The mean uncertainty values of the landcover map are cal-
culated from the conditional probability distribution (Fig. 4).
The mean uncertainty of the landcover classification ranges
between 6.55% in the Rur and Erft catchment areas and
9.03% in the Inde catchment. The lower landcover classi-
fication probability in the Inde catchment is due to a high
proportion of small-sized grassland parcels in this region.

The climatic data of the period 1979–1999 were provided
by the German Meteorological Service (DWD). The basis
for establishing the area-wide climate data is the climate and
precipitation stations of the DWD. The station values were
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Table 2. Averaged uncertainties of the landcover, slope and aspect maps for the different study areas and data ensembles.

Scale of the data set Microscale Mesoscale Macroscale
Region Saubach Saubach Inde Saubach Rur and Erft

Landcover 7.18% 7.26% 9.03% 7.12% 6.55%
Slope 1.16% 1.60% 2.72% 1.31% 1.56%
Aspect 17.98◦ 18.53◦ 18.2◦ 18.12◦ 17.96◦

regionalised using the IDW method (inverse distance weight-
ing interpolation) including an elevation correction function
(Müller-Westermeier et al., 1995). The potential evapo-
transpiration rates were determined according to Wendling
(1995), in which the reference evapotranspiration (Allen et
al., 1998) is modified for calculating long-term evapotran-
spiration rates (ATV-DVWK, 2002).

If uncertainty information is not available, general as-
sumptions for the potential data error have to be made. In
this study, the uncertainty information for the data sets is pro-
vided by the German Weather Service. In order to approx-
imately indicate the spatial interpolation errors, a station-
by-station cross validation was employed for the macroscale
study area using the available DWD climate stations. A mean
error of about 10% was found for 24 interpolation realisa-
tions using the IDW method. Therefore, a general error of
10% is assumed for the input parameters of precipitation and
potential evaporation. The systematic errors of the measure-
ments (e.g. wind-induced losses, wetting and evaporation
losses) are not considered in this study. Since no uncertainty
information was available from the Geological Survey NRW
a general error of 10% is also assumed for the soil water con-
tent available to plants.

4 The GROWA model

The empirical GROWA model (Kunkel and Wendland, 2002)
was chosen for estimating the groundwater recharge. The
GROWA model consists of several modules for determin-
ing the long-term annual averages of water-balance compo-
nents, namely actual evapotranspiration, total discharge, di-
rect runoff and groundwater recharge, as described in detail
in Kunkel and Wendland (2002). The calculation of total dis-
charge is based on an empirical method developed by Renger
and Wessolek (1996), which takes into account various forms
of landcover (arable land, grassland, deciduous forest, conif-
erous forest) for flat rural areas at some distance from the
groundwater table.

Several extensions were developed and implemented in
the model scheme, allowing an area-wide application of the
GROWA model. In the case of a site being affected by
groundwater, actual evaporation is set to a maximal evap-
oration rate, which is calculated according to Glugla et
al. (2002). Mean annual capillary rise is calculated in a
vegetation-specific way considering the mean annual rate and

the mean duration of capillary rise. In the case of high relief
terrains, a relief correction function according to Golf (1981)
is introduced that considers aspect and slope gradient. In
the case of urban areas, a correction factor is introduced to
account for the effect of sealing on the actual evaporation
rate. The values of these factors are based on investigations
by Wessolek and Facklam (1997). The following equation
shows the generalised form for the calculation of total dis-
charge (Qtotal) in the GROWA model:

Qtotal = Pyear− fh(υ, ζ ) ·

[
a · Psu + b · Pwi + c · log(Wpl)

+d · ETpot + e + fd · Dseal

]
(1)

Pyear: Annual precipitation [mm/a]
fh(ν, ζ ) : Relief correction function (ν=slope,ζ=aspect) [–]
a, b, c, d, e: Land-use-specific coefficients [–]
Pwi , Psu: Winter and summer precipitation [mm/a]
Wpl : Soil water content available to plants [mm]
ETpot: Annual potential evapotranspiration [mm/a]
fd : Correction factor [–]
Dseal: Sealing [%]

The GROWA model separates groundwater runoff (QGW )

from total discharge using baseflow indices (BFI), which de-
scribe groundwater runoff as a constant fraction of the total
runoff depending on specific area properties, e.g. slope gradi-
ent, soil and hydrogeological properties as well as the degree
of surface sealing (Bogena et al., 2005).

QGW = BFI · Qtotal (2)

In order to analyse the influence of data uncertainties on the
model results the Gauß error propagation method is assessed
by regarding the derivation of the model result with respect
to the erroneous quantities multiplied by the total uncertainty
of the quantities:

12Qgw =

∑
x

{(
∂Qgw

∂x
12x

)2

+

∑
y(y 6=x)

∂Qgw

∂x
·
∂Qgw

∂y
· Cov(x, y)

}
(3)

wherex andy are abbreviations of the input parameters, e.g.
eitherPsu, Pwi , Wpl , ETpot, Dseal, fh or BFI and Cov (x, y)
is the correlation of the input parameters.

The second term represents the influence of correlations
between the individual input parameters. In this context
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Fig. 4. Groundwater recharge in the macroscale study area (left) and the corresponding uncertainties (right).

the term “correlation” needs to be distinguished into spatial
and statistical correlation. A spatial correlation between two
quantities A and B is given, if large numbers of A are typi-
cally correlated to either large (positive correlation) or small
(negative correlation) of B. This type of correlation can usu-
ally be found for precipitation and potential evapotranspira-
tion fields. However, the statistical correlation means that
an error in the measurement of determination of quantity A
has a direct impact on the error of quantity B. If quantities
are regarded, which are measured individually or calculated
from different parameters, the statistical correlation of the er-
rors can be neglected in most cases. Since the Gaussian error
propagation is related to statistical errors exclusively, the in-
put parameters for the calculation of groundwater recharge
can be regarded as being independent. In this case, the sta-
tistical correlation Cov (x, y) in Eq. (3) is zero.

Differentiation of Eq. (1) and (2) according to Eq. (3) leads
to the following equation:

12QGW = BFI2 ·

{(
1−fh · a

)2
· 12Psu +

(
1−fh · b

)2
· 12Pwi

+

[
fh · c · log(e) ·

1Wpl

Wpl

]2
}

+ BFI2 ·

{
f 2

h · d2
· 12ETpot + f 2

h · f 2
d · 12Dseal

}
+

1

f 2
h

·

[Qgw

BFI
− Pj

]2
+ Q2

gw ·
12BFI

BFI2
(4)

5 Results

Figure 4 shows the results of the groundwater recharge cal-
culation for the macroscale study area (left) and the cor-
responding uncertainties as a result of the uncertainties of
all data sets used (right). In the consolidated rock region,
the low hydraulic conductivity of the solid rocks leads to
groundwater recharge rates that are often less than 100 mm/a.
Only the karstified carbonate rocks show significantly higher
hydraulic conductivities and the groundwater recharge rate

 

 

 
Fig.5 : The averaged uncertainties in percent of the mean groundwater recharge for the study 
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Scale of the data set Microscale Mesoscale Macroscale 

Region Saubach Saubach Inde Saubach Rur and Erft 
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Slope 1.16 % 1.60 % 2.72 % 1.31 % 1.56 % 
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Fig. 5. The averaged uncertainties in percent of the mean ground-
water recharge for the study areas as a result of the considered un-
certainties of the data sets.

increases to more than 300 mm/a. In the unconsolidated
rock region, groundwater recharge levels between 200 and
300 mm/a are most common. This distinct dichotomy in the
distribution of groundwater recharge rates is also apparent
for the corresponding uncertainties. Most parts of the con-
solidated rock region show uncertainties well below 20%,
except for the karstified carbonate rocks with significantly
higher values (more than 30%). The unconsolidated rock re-
gion, on the other hand, shows uncertainties between 15 and
40%.

In Fig. 5 the results of the uncertainty analysis for the
study areas are shown. In order to facilitate an analysis of the
differently scaled data ensembles on the calculated ground-
water recharge, averaged values of the uncertainties in per-
cent of the mean groundwater recharge are calculated. The
differences between the scales cannot be generalised since
the identified uncertainties are determined by the individ-
ual characteristics of the catchment area and the available
database. For example, the mean groundwater recharge error
that results from the uncertainties of the mesoscale data en-
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semble (Inde) is mostly lower. However, the averaged errors
for the Saubach catchment are quite similar to the macroscale
data ensemble.

The uncertainty in groundwater recharge due to the BFI
values is equivalent to the assumed BFI error 10% because
of the simple BFI approach (Eq. 2). The precipitation error
has also an noteworthy impact on the uncertainty of the sim-
ulation result. By assuming a global precipitation error of
10% in most cases a mean groundwater recharge error from
3.6% (Inde) to 5.3% (Rur and Erft) are calculated. The other
input data uncertainties considered only produce groundwa-
ter recharge errors below 3%.

The differences between the data ensembles are very low.
A higher resolution of the landcover classification map and
the digital elevation model did not produce significantly
lower groundwater recharge errors. However, it has to be
considered that this study did not include the evaluation of
the location accuracy. It can be assumed that higher reso-
lutions of geographic data will lead to lower location uncer-
tainties.

6 Conclusions

The Gaussian error propagation method is a usefully tech-
nique for analysing the influence of input data on the simu-
lated groundwater recharge. The present uncertainty analysis
showed that the BFI and precipitation uncertainties had the
greatest impact on the total groundwater recharge error. This
result is achieved by using a specific model and is therefore
not simply transferable to other hydrological models. Fur-
thermore, it has to be noted that this analysis has the charac-
ter of a worst case study, since the climate parameter used in
this study shows a significant correlation.

This study presents an approach for an uncertainty anal-
ysis that may be applicable for other models and which is
also transferable to other regions. However, a prerequisite
for an uncertainty evaluation is sound error specifications
of the data sets. Methods like the Monte Carlo approach
shown in this study are only a surrogate and can only give
an approximation of the real errors. Therefore, in the future
survey organisations should more frequently determine and
record the qualities of each survey and add an extra attribute
to the data set documenting, for instance, a conditional prob-
ability value. This information could be easily implemented
in the uncertainty assessment methodology for groundwater
recharge evaluation presented in this paper and would greatly
improve the reliability of the uncertainty assessment.
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