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Abstract. We assess the performance of random forests and
Prophet in forecasting daily streamflow up to seven days
ahead in a river in the US. Both the assessed forecasting
methods use past streamflow observations, while random
forests additionally use past precipitation information. For
benchmarking purposes we also implement a naïve method
based on the previous streamflow observation, as well as a
multiple linear regression model utilizing the same informa-
tion as random forests. Our aim is to illustrate important
points about the forecasting methods when implemented for
the examined problem. Therefore, the assessment is made in
detail at a sufficient number of starting points and for several
forecast horizons. The results suggest that random forests
perform better in general terms, while Prophet outperforms
the naïve method for forecast horizons longer than three
days. Finally, random forests forecast the abrupt streamflow
fluctuations more satisfactorily than the three other methods.

1 Introduction

Streamflow forecasting is important due to its engineering-
oriented implementation in flood and water resources man-
agement. The large variety of relevant applications includes
flood and drought prediction, irrigation and reservoir oper-
ation applications (see, for example, Zhang et al., 2018).
Therefore, improved hydrological forecasts in various time
scales can benefit the society. Data-driven, including ma-
chine learning, models are commonly used for streamflow
(or river discharge and reservoir inflow) forecasting. The lat-
ter can be performed by exclusively using observed stream-

flow data, as in Papacharalampous et al. (2017a, 2018a)
and Zhang et al. (2018), or by also using information ob-
tained from predictor variables (e.g. precipitation variables).
Such examples are available in Jain et al. (2018), and Tyralis
and Papacharalampous (2018). Recent studies by Papachar-
alampous et al. (2017a, b, 2018a, b, c), and Tyralis and Pa-
pacharalampous (2017) suggest that several classical and/or
popular forecasting algorithms are mostly equally useful for
hydrological applications when exploiting information from
past observations only. Improvements may result from the
use of suitable predictor variables.

Let xi and yi denote daily precipitation and mean daily
streamflow at day i= 1,. . . , n. If the observations are known
up to day k, then the j -step ahead forecast is defined as the
forecast of the random variable yk+j obtained by using in-
formation up to day k. Herein, we assess the performance
of random forests and Prophet for j -step ahead forecasting.
These two models are introduced by Breiman (2001), and
Taylor and Letham (2018a) respectively. The former is a pop-
ular machine learning technique successfully applied in fore-
casting competitions. Tyralis and Papacharalampous (2017)
optimize its forecasting use when it is exclusively provided
with past information for the process to be forecasted, while
here additional information for predictor variables is consid-
ered. Random forests are also used in data-driven rainfall-
runoff applications (e.g. Shortridge et al., 2016; Petty and
Dhingra, 2018), which are similar to forecasting applica-
tions with the exception that the predictor variables are con-
sidered to be known until time k+ j and streamflow un-
til time k+ j − 1. Moreover, streamflow prediction applica-
tions of random forests can be found in Lima et al. (2015)
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Figure 1. Mean daily streamflow of Current river at Doniphan, Missouri (longitude: −90.85, latitude: 36.62) for the years 1981–2013.

Figure 2. Sample autocorrelation of the daily streamflow of the Current river and sample cross-correlation with the daily precipitation of the
basin. The sample cross-correlation is the estimate of Corr[xi , yi+j ], where Corr is the cross-correlation function.

and Papacharalampous et al. (2017a, 2018a, b). Prophet is
an automatic time series forecasting model, which also al-
lows the incorporation of predictor variables, as well as
the computation of prediction intervals. The latter is pro-
posed, for instance, in Tyralis and Koutsoyiannis (2014). Pa-
pacharalampous et al. (2018c) investigate the performance of
Prophet in monthly temperature and precipitation forecast-
ing without utilizing predictor variables. This is also the way
used herein. Since benchmarking forecasting results is es-
sential, we implement a naïve method and a multiple linear
regression model alongside with the above outlined sophisti-
cated ones. Our aim is to illustrate important facts about the
models for the problem under examination.

2 Data and methods

We forecast the mean daily streamflow of Current River at
Doniphan, Missouri (see Fig. 1). The daily precipitation data
xi at the basin and the mean daily streamflow data yi span
in the time period 1981–2013. This dataset was compiled by

Addor et al. (2017b, see also the data availability section).
The sample autocorrelation Corr[yi , yi+j ] and the sample
cross-correlation Corr[xi , yi+j ] are presented in Fig. 2. The
sample autocorrelation is higher than 0.4 for time lag up to
three days, while the sample cross-correlation is higher than
0.4 for time lag up to two days. A correlation equal to 0.4
means that the predictor variable can explain approximately
16 % of the variance of the dependent variable in a linear re-
gression model between yi and xi .

Subsequently we present the forecasting methods of this
study, while further implementation details can be found
in the code availability section. The forecasts of the naïve
benchmark at time k+ j , j = 1,. . . , 7 are equal to yk , i.e.
they are equal to the last observation. The use of this
benchmark is documented in Hyndman and Athanasopou-
los (2018, Chap. 3.1). Multiple linear regression models are
also widely implemented benchmarks (see Solomatine and
Ostfeld, 2008). Herein, they are used for benchmarking the
results of random forests; therefore, the predictor variables
utilized by these two methods are identical. These predictor
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Figure 3. 1-step ahead forecasts of the Current river daily streamflow in the periods 2004–2013 (a) and 2012–2013 (b).

variables are reported below together with the justification of
their selection. For the same methods, streamflow and pre-
cipitation data are pre-processed using the square root, as
proposed by Messner (2018), with the aim for them to be
normalized.

Prophet is based on the idea of fitting Generalized Ad-
ditive Models. Its documentation is available in Taylor and
Letham (2018a), while details about its software implemen-
tation can be found in Taylor and Letham (2018b). We ex-
amine three variations of the Prophet model. In the first vari-
ation (hereafter named as “Prophet 1”; the remaining varia-
tions are named in a similar way) we decompose the stream-
flow time series up to time k using the STL method (Cleve-
land et al., 1990) and remove the seasonal component. Then
Prophet is fitted to the decomposed time series, it forecasts at
times k+j , j = 1,. . . , 7 and, finally, the seasonal component
is added to the forecast. Prophet 2 is fitted to the stream-
flow time series up to time k, and forecasts at times k+ j ,

j = 1,. . . , 7. In this variation the seasonal component is au-
tomatically handled by Prophet. Prophet 3 uses the last 30
observed values for fitting.

Literature and technical information on the implementa-
tion of random forests is available in Verikas et al. (2011),
and Biau and Scornet (2016). Random forests are easy to
tune and implement due to the low number of parameters
(see also Scornet et al., 2015). Their main parameter is the
number of trees. Higher number of trees results in predictions
that are more accurate; however, in this case the computation
time increases substantially, while there is also an asymptotic
limit in the accuracy of the model (see, for example, Biau
and Scornet, 2016). We use 100 trees, which is considered
as a reasonable and balanced choice regarding their accu-
racy (with respect to the limit of accuracy) and computational
cost (Probst and Boulesteix, 2018). The other parameters are
set equal to the default values, as in the implementation by
Wright (2018). To forecast 1-step ahead (i.e. to forecast yk+1)
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we use xk−2, xk−1, xk , yk−3, yk−2, yk−1, yk and the month of
the yk+1 as predictor variables. We also used a lower num-
ber of predictor variables and the performance (not presented
here for reasons of brevity) was similar. Using more predic-
tor variables would result in considerably higher computa-
tion time with little expected gain in performance. We use
the month of yk+1 for considering the seasonality effect. To
forecast yk+2 we use again xk−2, xk−1, xk , yk−3, yk−2, yk−1,
yk and the month of yk+2 as predictor variables. We apply
the same procedure to forecast yk+j , j = 3,. . . , 7. Regard-
ing the training period, if we want to forecast yk+1, random
forests are fitted using the respective xi−3, xi−2, xi−1,yi−4,
yi−3, yi−2, yi−1 as predictor variables and yi as dependent
variable for i= 1,. . . , k. Each time that a new forecast is re-
quired (i.e. when i increases by 1), the model is trained again,
so that it includes the latest information. A similar procedure
is followed for longer forecast horizons.

Forecasting is performed for all days in the years 2004–
2013. The reason for using 1/3 of the dataset for testing is
justified on the ground of the large variability of streamflow
explained from climatic and other factors (e.g. Kingston et
al., 2006; Li et al., 2018; Tyralis et al., 2018). Testing in an
independent set is also a standard practice in the assessment
of data-driven models (e.g. Solomatine and Ostfeld, 2008;
Elshorbagy et al., 2010a, b; Wu et al., 2014). In particular
for observations up to day k we forecast the streamflow at
days k+j , j = 1,. . . , 7. We produce forecasts for values of k

in {2003-12-21,. . . , 2013-12-30}. The forecasts are summa-
rized conditional upon the forecasting method and the fore-
cast horizon.

3 Results

Section 3 is devoted to the presentation of the results, which
emphasizes on the 1-, 4- and 7-day ahead forecasts. In
Figs. S1 and S2 (see the Supplement) we present these fore-
casts in comparison to the observations, while Fig. 3 focuses
on the 1-day ahead forecasts. The differences between the
methods are better presented in Fig. S2 in the Supplement.
This figure zooms in the period 2012–2013. In general, the
forecasts of the naïve, multiple linear regression and random
forests methods are close to their target values. When the
length of the forecast horizon increases, the distance between
the observations and the forecasts increases as well. The fore-
casts of Prophet 1 and 2 are smooth lines, i.e. they do not cap-
ture the abrupt streamflow changes. In addition, they lay far
from the actual streamflow values. The forecasts of Prophet 3
seem to be in better agreement with the observed streamflow;
still, they are worse than those produced by the naïve, multi-
ple linear regression and random forests methods.

In Fig. 4 we present the root mean square errors (RMSE)
and root median square errors (RMdSE) for all forecast hori-
zons. Random forests have the lowest RMSE followed by the
multiple linear regression, the naïve and Prophet 3 methods

Figure 4. Root mean square forecast errors (a) and root median
square forecast errors (b).

for short forecast horizons (with length less than three days).
For forecast horizons longer than four days random forests
still perform the best, while Prophet 1 and 2 are better than
the naïve and Prophet 3 methods. The performance of the
naïve, multiple linear regression and random forests meth-
ods decreases with increasing length of the forecast horizon
and gets stabilized for long forecast horizons due to the re-
duction of the available information used by the predictor
variables. Prophet 1 and 2, on the other hand, seem to have
a constant performance for all forecast horizons. In terms of
RMdSE the naïve method is better than Prophet 3, which in
turn is better than Prophet 1 and 2 for all forecast horizons.
The performance of Prophet 1 and 2 is constant regardless of
the forecast horizon. Random forests are the best method for
the 1-day ahead forecast horizon, and the second best for the
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Figure 5. Notched boxplots of the absolute forecast errors of the 1, 4
and 7-step ahead forecasts (a to c) of the daily streamflow of Current
river in the period 2004–2013. The x axis of the three graphs has
been truncated at 100 m3 s−1.

2-day ahead and higher forecast horizons. RMdSE is lower
than RMSE for all methods.

To further investigate the above rankings and the differ-
ence in the magnitude between RMSE and RMdSE, in Fig. 5
we present the notched boxplots of the absolute errors for
the 1-, 4- and 7-day ahead forecast horizons. The medians of
the absolute error are similar to the RMdSE values presented
in Fig. 4. The boxplots are positively skewed, resulting in
higher RMSE than RMdSE values. In addition, the disper-
sion of absolute errors is higher for longer forecast horizons.

To understand how close the forecasts are to their corre-
sponding observations we present the scatterplots of Fig. 6.
For all the methods excluding Prophet 1 and 2 the plots of
the linear models fitted between the forecasts and the ob-
servations are close to the black line, which corresponds to
forecasts equal to the observations, indicating a good per-
formance in 1-day ahead forecasting. The distance between
the black line and the other linear regression lines increases,

Figure 6. 1-, 4- and 7-step ahead forecasts (a to c) and their corre-
sponding mean daily streamflow values. The black line corresponds
to forecasts equal to observations, while the remaining lines are the
plots of the linear regression models fitted between forecasts and
observations.
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when the forecast horizon increases. The increase is less pro-
nounced for the Prophet 1 and 2 methods.

4 Discussion and conclusions

In summary, the following remarks are important, especially
in light of Abrahart et al. (2008) who comment on the need
for documenting the performance assessment of data-driven
models on the grounds of specific questions. Random forests
are a better predictor compared to the multiple linear re-
gression models, while they outperform the naïve method
in terms of root mean square error. The use of the selected
precipitation predictor variables considerably improves the
forecasts, probably due to the nature of the examined prob-
lem; however, their influence diminishes for forecast hori-
zons longer than four days. This is also expected from the
magnitude of autocorrelations and cross-correlations with
precipitation, which indicate that precipitation should influ-
ence the magnitude of streamflow for some days. The fore-
casting error of the Prophet 1 and 2 methods (which are fitted
to the whole sample) is independent of the forecast horizon.
Nevertheless, these two methods perform consistently worse
than the other methods in terms of root median square error,
while they have a comparable (to the other methods) per-
formance in terms of root mean square error. Furthermore,
Prophet exhibits a worse performance than the naïve method
when it exclusively uses observations from the last 30 days
(Prophet 3). Random forests are a good method for obtaining
optimal forecasts, while their performance could be further
improved by using more predictor variables, e.g. temperature
variables. The naïve method is also good; therefore, it should
be used as a benchmark, in spite of the fact that it is rarely
met in the hydrological forecasting literature. The Prophet
model should be used for forecasting at long horizons.

We note that this study is among the first implementing
random forests and Prophet for streamflow forecasting. We
have thoroughly investigated the performance of all meth-
ods, looking at their predictive performance at several fore-
cast horizons. The visualization of all aspects helped in bet-
ter understanding important facts about the models’ perfor-
mance and, thus, could be used as a guide for the assessment
of methods in streamflow forecasting.

Code availability. This paper is easily reproducible using the R
Programming Language (R Core Team, 2018). We used the follow-
ing R packages: bestNormalize (Peterson, 2018), devtools (Wick-
ham et al., 2018b), gdata (Warnes et al., 2017), ggplot2 (Wickham,
2016; Wickham et al., 2018a), gridExtra (Auguie, 2017), knitr (Xie,
2014; 2015; 2018), lubridate (Grolemund and Wickham, 2011;
Spinu et al., 2018), prophet (Taylor and Letham, 2018b), ranger
(Wright, 2018; Wright and Ziegler, 2017), readr (Wickham et al.,
2017), rmarkdown (Allaire et al., 2018), scales (Wickham, 2018),
stringi (Gagolewski, 2018), zoo (Zeileis and Grothendieck, 2005;
Zeileis et al., 2018).

Data availability. The data used in the present study can be ob-
tained from the CAMELS dataset (Addor et al., 2017a, b; New-
man et al., 2014, 2015). The daily precipitation data included in the
CAMELS dataset were sourced by Thornton et al. (2014).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/adgeo-45-201-2018-supplement.
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