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S.1 Definitions and background information 

Let us consider a time series of N observations. Let us also consider a prediction made for 

the next n observations. 

If the total information utilized for this prediction is past available information (with 

respect to the prediction period), the prediction is also considered as a forecast. 

For n = 1, the forecast is considered as an one-step ahead forecast. 

For n > 1, the forecast is considered as a multi-step ahead forecast. 

The forecasted variable(s) are called predictand (or dependent) variables and result 

via regression on the predictor (or independent) variables. 

The latter can be endogenous or exogenous. According to Hyndman and Kostenko 

(2006) the former are variables, the values of which are determined within the system, 

and the latter are variables, the values of which are determined outside of the system. 

Box S.1. Basic forecasting terminology. 

Let {xt}, t = 1, 2, … be a Hurst-Kolmogorov process. The latter is a three-parameter 

normal stationary stochastic process in discrete time. Its parameters μ, σ and H are 

defined by Equations S.1-S.3 (Tyralis and Koutsoyiannis 2011). 

 μ := E[xt] (S.1) 

 σ := (Var[xt])1/2 (S.2) 

 ρk := Corr[xt, xt + k] = |k + 1|2H / 2 + |k − 1|2H / 2 − |k|2H, k = 0, 1, …, H ∊ (0, 1) (S.3) 

The parameter μ is the mean of the stochastic process and the parameter σ is its 

standard deviation. The parameter Η represents the magnitude of long-range 

dependence, i.e. the tendency of wet or dry years to be clustered in long time periods 

(persistence), while the autocorrelation function ρk increases with H. High values of H 

denote strong long-term persistence, while when H < 0.5, the resulting stochastic process 

is antipersistent, but still stationary. H = 0.5 is equivalent to a stochastic process of 

independent variables. 

Box S.2. Definition of the Hurst-Kolmogorov process. This box is an adapted reproduction 

from Tyralis et al. (2018). 

The AutoRegressive Fractionally Integrated Moving Average (ARFIMA) models are 

widely used in hydrology. The reader is referred to Wei (2006, pp. 6-65, 489-494) for their 

detailed definitions. Let d ∊ (−0.5, 0.5). The stochastic process {xt} is an ARFΙMA(p,d,q), if 

Equation S.4 holds. 

 φp(B)(1 − B)dxt = θq(B)at (S.4) 
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where 

 φp(B) := 1 − φ1B − … − φpBp (S.5) 

 θq(B) := 1 + θ1B + … + θqBq (S.6) 

 Bjxt = xt-j (S.7) 

B is an operator, φ1, …, φp, d and θ1, …, θq are parameters of the model, and {at} is a white 

noise process. The parameter d is a measure of the estimated long-range dependence of 

the time series (see also Box S.2). The parameters p and q are the orders of the 

AutoRegressive and Moving Average components of the ARFIMA model. The ARFIMA 

forecasting method fits an ARFIMA(p,d,q) model to the fitting set. The fitting procedure is 

explained in Hyndman et al. (2017). The parameters p and q are estimated using the 

Hyndman and Khandakar (2008) algorithm and the parameter d is estimated using the 

Haslett and Raftery (1989) algorithm. The method combines functions from the fracdiff 

(Fraley et al. 2012) and forecast (Hyndman et al. 2018) R packages. The fitted model is 

used for forecasting future values. 

The Simple Exponential Smoothing (SES) model, introduced by Brown (1959) and 

described in Hyndman et al. (2008, p. 13), computes the forecast of the next period based 

on the forecast of the previous period, the latter adjusted using its error according to 

Equation S.8. 

 ft+1 = ft + a(xt − ft), a ∊ (0, 1) (S.8) 

The estimation of the parameters of the SES model is performed using procedures of 

the forecast R package (Hyndman et al. 2018). 

The Prophet model, introduced by Taylor and Letham (2018) and implemented 

through the prophet R package (Taylor and Letham 2017), considers time series 

forecasting as a curve-fitting exercise, while it does not explicitly consider the temporal 

dependence of the time series. It simultaneously uses a decomposable time series model. 

The Prophet model is inspired by the nature of the time series forecasted at Facebook, 

which are characterized by trend, multiple seasonality and holidays. 

Box S.3. Brief description of the ARFIMA, SES and Prophet models. This box is an adapted 

reproduction from Papacharalampous et al. (2018c). 

For the definitions we consider a time series of N observations. Let us also consider a 

forecast of the last n observations. Let x1, x2, …, xn represent the last n observations and f1, 

f2, …, fn represent the forecasted values. 

The Root Mean Square Error (RMSE) metric is defined by Equation S.9. 

 RMSE :=   (1/n) i = 1
n (fi - xi)2   (S.9) 

Let x‾ be the mean of the observations, which is defined by Equation S.10. 
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 x‾ := (1/n) i = 1
n xi (S.10) 

The Nash-Sutcliffe Efficiency (NSE) metric is defined by Equation S.11 (Nash and 

Sutcliffe 1970). 

 NSE := 1 - (i = 1
n (fi - xi)2/i = 1

n (xi - x‾)2) (S.11) 

The index of agreement (d) metric is defined by Equation S.12 (Krause et al. 2005). 

 d := 1 - (i = 1
n (fi - xi)2/i = 1

n (|fi - x‾|+|xi - x‾|)2) (S.12) 

Let sx be the standard deviation of the observations, which is defined by Equation S.13. 

 sx :=   (1/(n-1))i = 1
n (xi - x‾)2   (S.13) 

Let f‾ be the mean of the forecasts and sf be the standard deviation of the forecasts, 

which are defined by Equations S.14 and S.15 respectively. 

 f‾ := (1/n) i = 1
n fi (S.14) 

 sf :=   (1/(n-1))i = 1
n (fi - f‾)2   (S.15) 

The Pearson’s correlation coefficient (Pr) metric is defined by Equation S.16 (Krause 

et al. 2005). 

 Pr :=  (i = 1
n (xi - x‾)(fi - f‾))/(i = 1

n (xi - x‾)2 i = 1
n (fi - f‾)2)0.5 (S.16) 

The Kling-Gupta Efficiency (KGE) metric is defined by Equation S.17 (Gupta et al. 

2009). 

 KGE := 1 -    (Pr - 1)2 + ((sf/sx) - 1)2 + ((f‾/x‾) - 1)2   (S.17) 

Box S.4. Definition of the RMSE, NSE, d and KGE metrics. This box is an adapted 

reproduction from Papacharalampous et al. (2018a, supplementary material).
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S.2 Additional figures 

(a) 

 

(b) 

 

(c) 

 
 

Figure S.1. Exploration of the monthly streamflow data examined in the forecasting 

experiment: (a) AutoCorrelation (ACF) estimates of the original time series, (b) ACF 

estimates of the deseasonalized time series and (c) Hurst parameter (H) estimates of the 

deseasonalized time series; their median is denoted with a green dashed line. The ACF 

and H estimates for the 513 catchments are presented in an aggregated form. 

  
 

Figure S.2. Pearson’s correlations between the monthly streamflow and precipitation 

variables (corr(St,Pt)), and the monthly streamflow and temperature variables 

(corr(St,Tt)) computed for the 513 catchments examined in the forecasting experiment. 

The correlations are presented in an aggregated form. Their medians are denoted with 

green dashed lines. 



 

 

5 

 

  
  

  
  

  
  

  

       

Figure S.3. Number of times that each algorithm is ranked from best (1st) to worst (8th) 

according to the RMSE metric. 
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Figure S.4. Average rankings of the algorithms according to the RMSE metric. The 

algorithms are ranked from best (1st) to worst (8th). 
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