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Abstract. Skipjack (Katsuwunus pelamis), yellow fin (Thun-
nus albacares) and albacore (Thunnus alulunga) tunas landed
in the Eastern Pacific Ocean (EPO) countries and Ecuador
were correlated to the Indexes Oceanic El Niño (ONI) and
Multivariate Enso Index (MEI). The temporal series 1983–
2012, and 1977–1999 (warm Pacific Decadal Oscillation,
PDO), and 2000–2012 (cold PDO) were analyzed. Linear
correlation showed that at least 11 % of the total landings
were associated with the MEI, with a slightly negative gradi-
ent from cold to warm conditions. When non-linear regres-
sion (n = 6), the R2 was higher up to 0.304 (MEI, r= 0.551).
The correlation shows high spread from −0.5 to +0.5 for
both MEI/ONI; the highest landings occurred at 0.34–0.45;
both indexes suggested that at extreme values <−1.0 and
> 1.1 total landings tend to decrease. Landings were associ-
ated up to 21.9 % (MEI) in 2000–2012, 1983–1999 rendered
lower R2 (< 0.09); i.e., during cold PDO periods there was a
higher association between landings and oceanographic con-
ditions. For the non-linear regression (n= 6) a R2 of 0.374
(MEI) and 0.408 (ONI) were registered, for the 2000–2012,
a higher R2 was observed in 1983–1999, 0.443 and 0.711 for
MEI and ONI respectively, suggesting that is better to an-
alyze split series (1983–1999, 2000–2012) than as a whole
(1983–2012), due to noise produced by the transition from
hot to cold PDOs. The highest landings were in the range
−0.2 to 0.5 for MEI/ONI. The linear regression of skipjack
landings in Ecuador gave an R2 of 0.140 (MEI) and 0.066
(ONI) and the non-linear were 0.440 and 0.183 respectively.
Total landings in the EPO associated to oceanographic events
of high and low frequencies could be used somehow as pre-
dictors of the high El Niño o La Niña. There is a clear ev-
idence that tuna fish biomass are at higher levels when the
PDO is on cold phase (2000–2030) and vice versa on warm

phase (1980–1999). The analysis of the skipjack catch per
unit effort (CPUE) on floating aggregating devices (FADs)
suggests higher CPUE on FADs (around 20 mt set−1) when
oceanographic indexes ONI/MEI are below −0.5. Findings
of this work suggest that fishing and management of com-
mercial fish must be analyzed under the light of oceano-
graphic conditions.

1 Introduction

In the Pacific Ocean two high frequency events occur on an
inter-annual basis; i.e., El Niño and La Nina (e.g. Trenberth
and Hoar, 1996), with big/super events occurring around
every 15 years (Douglass et al., 2001). Also a lower fre-
quency of 25–30 years, known as the Pacific Decadal Os-
cillation (PDO), has been detected (Mantua et al., 1997;
Mantua and Hare, 2002). There is a huge amount of liter-
ature (e.g. Wirtky, 1965; McPhaden 1993, 1999; Trenberth,
1997; Clarke, 2008; Khider et al., 2011, etc.), vast number
of web pages (see e.g. NOAA), many long period projects
(e.g. TAO-TRITON), more than 20 statistical and dynamics
prediction models (ENSO-NOAA) and dozens of institutions
and laboratories with hundreds of scientists working on these
topics. The effects of El Niño are well known especially be-
cause they can bring huge socio-economic losses, epidemics
(dengue, malaria, cholera and so on), deaths etc. especially
after the two big events 1982–1983 and 1997–1998 (Glantz,
1998). The El Niño event has been and is being deeply re-
searched not only along the Equatorial Pacific Ocean but
around the world together with the opposite event, so called
La Niña. These events also have relevant impacts on many
types of fisheries from demersal to pelagic (small and large
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Figure 1. Skipjack tuna (metric tons) catches under la Niña and
El Niño events. Sea surface temperatures in centigrade (◦C). After
WWF (2013). Catch load in metric tons (blue circles).

species). The El Niño event increases sea water column and
surface temperatures (leading to thermal anomalies as high
as 6 ◦C; surface temperature > 27 ◦C, e.g. Trenberth, 1997),
lowers salinity, from 35 down to 32 (D’Croz et al., 1991),
leads to much lower nutrients and primary production pro-
ductivity (Chavez et al., 2003), which in turn affects higher
trophic levels, bringing positive and negative impacts on fish-
eries around Ecuador and Peru (Ormaza-González, 2008,
2009a, b, 2010a, b, 2011, 2012a, b; Kimura et al., 2001;
Chávez et al., 2003; Ballón et al., 2008; Ormaza-González
et al., 2016). Regarding the Pacific Interdecadal Oscillation
(PDO), which was initially reported and named by Mantua et
al. (1997) in a paper about Alaskan Salmon (Oncorhynchus
sp); this oscillation has been overlooked but a more recent
summarizing paper gives good insights into the PDO (Man-
tua and Hare, 2002) and how this low frequency variation
affects long term distribution trends of fisheries. Tuna stocks
are affected by these events in diverse manners: distribution,
reproduction, recruitment and growth rate (e.g. Lehodey et
al., 1997, 1998, 2003, 2006; Lehodey, 2004). Figure 1 shows
how the capture is affected by El Niño and La Niña in the
western Pacific; most of the catches of skipjack are within
the 29 ◦C isotherm and as this isotherm widens or narrows in
space; the catches follow this change. Thus, during La Niña
catches are concentrated around 140◦ E, whilst in El Niño are
spread from 140 to 180◦ E.

Most of the work regarding tuna and the above mentioned
oceanographic fluctuations has been made in the western Pa-
cific; tuna distribution and catches in eastern Pacific should
be directly impacted by El Niño or La Niña and the PDO;

thus the present work tries to find how these oceanographic
events have affected tuna catches in the eastern Pacific by sta-
tistically correlating them with two oceanographic indexes
that are used to determine these low and high frequency
events in the Equatorial Pacific.

2 Materials and Methods

The El Nino-Enso Indexes: Oceanographic El Niño Index
(ONI) and Multivariate Enso Index (MEI) are oceanographic
indexes that are accepted as indicators of whether or not
El Niño or La Niña is occurring or not. The Oceanographic
El Niño (Smith et al., 2008; Null, 2013) index is obtained
from sea surface temperature (SST) anomalies computed
since 1950 in the so called El Niño 3–4 region whose lim-
its are: 5◦ N–5◦ S and 120–170◦W, whilst the MEI (Wolter
and Timlin, 1993, 1998, 2011) is a multivariable index
(SST, zonal and meridional components of surface winds,
total cloudiness fraction of the sky, surface air temperature
and sea-level pressure) in the same El Niño region; both
indexes are available from: http://www.cpc.ncep.noaa.gov/
products/analysis_monitoring/ensostuff/ensoyears.shtml and
http://www.esrl.noaa.gov/psd/enso/mei/ respectively. The in-
dexes were averaged on yearly basis from 1983 to 2012 as
the available data on tuna landings were total per year. Tuna
(total) captured in the eastern Pacific is mainly a composite
of skipjack (Katsuwonus pelamis) and yellow fin (Thunnus
albacares), that represents > 95 % of all tuna species. Data
were obtained from the Inter-American Tuna Tropical Com-
mission, IATTC (Ecuador and Colombia are members of this
Regional Fisheries Management Organization) for the East-
ern Pacific Ocean: EPO); also catch effort (metric tons per
number of sets, mt set−1) on FADs (Floating Aggregating
Devices) was also analyzed. The temporal series 1983–2012
was analyzed first, but as this series included both warm and
cool PDO, it was split in two series: namely; 1977–1999
(warm), 2000–present (cold).

3 Results

Tuna landings, as in any other fisheries, increase as the car-
rying capacity of the fleet does. Thus, the tuna fleet capacity
(purse seiners) has steadily increased since 1961 (32 thou-
sands m3) to 2013 (212 thousands m3), according to the
IATTC (2014). Figure 2 shows landings and MEI/ONI in
time (1983–2012) in the EPO (West coast of the Americas to
150◦W, and 40◦ N–40◦ S); skipjack and yellow fin tuna cap-
tured in this area represented in 2012 around 20 % of the Pa-
cific Ocean and 13 % world catches (around 4.34 million mt;
SOFIA, 2014), total landings steadily increased in time as a
direct consequence of the fleet capacity from 153 788 met-
ric tons (mt) in 1983 to 535 385 mt in 2012, with a peak of
742 136 mt in 2003.
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Figure 2. Total tuna landings (mt) in the EPO (1983–2012), MEI (a), and ONI (c) indexes yearly averaged in time, and linear correlation
MEI (b) and ONI (d) and landings. Data NOAA and IATTC (2014).

Comparing the behavior of ONI and MEI in time, both
presented three peaks of anomalies (above 0.5, Fig. 2) whilst
landings were increasing; after 1998 (i.e. during the last
warmest event) there is a quick fall. From 2002 a trend of
both indexes presents negative gradients that in turn meet the
decreasing landings; from these graphs, it is noticeable that
up/down peaks/valleys of ONI/MEI indexes to some degree
mirror landings. Linear correlation (Fig. 2) shows a R2 of
0.026 and 0.106 for ONI and MEI respectively, meaning that
at least 11 % of the landings were associated with the MEI in-
dex, with a slightly negative gradient, implying that El Niño
event tends to lower landings or availability of fish to be
caught. When no-linear regression was applied using polyno-
mial function of n= 6, the R2 was higher up to 0.304 (MEI,
with a Pearson coefficient of 0.551), i.e. 30.4 % of correla-
tion. The correlations showed high spread when MEI/ONI
are >−0.5 and < 0.5, the highest landings occurred at indexes
of 0.34–0.45; both indexes suggested that at extreme values
<−1.0 and > 1.1 landings tend to decrease.

The whole period was divided in two series (Fig. 3) in
order to avoid noise of the transition from the warm PDO
(1976–1999) to the cool one (2000–present). Landings were
linearly associated up to 21.9 % (MEI) in the series 2000-
present, whilst in the series 1983–1999 rendered lower R2

(< 0.09). For the non-linear regression, the polynomial func-
tion (n= 5) obtained a R2 of 0.374 (MEI) and 0.408 (ONI)
for the 2000–2012 series and even higher R2 (n= 6) were
observed in the series 1983–1999 (0.443 and 0.711 for MEI
and ONI respectively), suggesting that during warm periods
there was higher association between landings and oceano-
graphic condition on a non-linear basis. Total tuna yearly
landings in the EPO data shows that effectively they have
decreased 8.1 % (1997–1998) and 14.8 % (2009–2010) dur-

ing strong El Niño and La Niña events respectively, however
for skipjack tuna these percentages were 12.1 and 36.0 % in
the same order. Generally, a year after the warm events, land-
ings increased notably; thus, returning them to average levels
similar to the year before events.

In the same way and considering that skipjack tuna makes
most of the landings in the EPO the analysis was performed
(Fig. 4), finding a lower R2 (up to 0.14 or 14 % association)
compared against total landings (Fig. 3), but again the highest
landings were somewhere in the range from −0.2 to +0.5
for MEI/ONI indexes; also the polynomial functions (n= 6)
suggest that extreme values El Niño/La Niña) produced a fall
in the landings.

Thereafter, similar exercises were run for skipjack land-
ings in Peru, Colombia and Ecuador (Fig. 5), as the coast of
these countries are within or close to so-called El Niño re-
gion 1–2 (Clarke, 2008); linear correlation provided an as-
sociation (landings/oceanographic condition) in the range of
7–15 % for the whole series (1983–2012). For the split series
1983–1999 and 2000–2012 (Fig. 5), the R2 for the non-linear
regressions were as high as 0.940 (Pearson r = 0.969) and
0.695 in that order; i.e., the association up to 94 %, whilst the
linear correlation gave 7.8 % and 11.1 % with ONI and MEI
respectively in the period 1983–1999; and 1.3 and 2.0 % for
1999–2012 in the same order.

Landings of skipjack (1983–2012) only in Ecuador cor-
related with the MEI/ONI (Fig. 6) and gave a linear regres-
sion R2 of 0.14 (MEI) and 0.066 (ONI) whilst the non-linear
regressions (n= 6) were 0.440 and 0.183 respectively. In
Ecuador, the impact of the warm/cold high frequency events
appear to be higher, thus in 1998 (El Niño) the increase was
about 22.7 %, whilst during La Niña (2010) the diminution
was 38 %.
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Figure 3. Total tuna landings in the EPO. Linear (a, c) and non-linear correlation (b; n= 6 and d, n= 5) MEI/ONI for time series 1983–1999
and 2000–2012. Data NOAA, CIAT (2013).
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The skipjack fishing effort (mt set−1 on FADs) in the EPO
against MEI/ONI was also analyzed (Fig. 7) between 1997
and 2012, the R2s were 0.197 (MEI) and 0.656 (ONI) on a
non-linear regression (n= 3), the highest fishing effort was
at low MEI/ONI values (<−1.0): over 35 mt set−1. These
values suggest that about 20 mt set−1 is the average with
MEI/ONI in the range of −0.5 to 0.5, i.e. neutral conditions.
For the linear regression again the R2 registered that 9.4 and
15.5 % of the effort is associated to the MEI and ONI in-
dexes respectively. Additionally, the polynomial regression
suggested that catch effort/set tend to increase at lower than

−1.0 ONI index, and the contrary for ONI and MEI higher
than 1.0.

4 Discussion

The above analysis shows that tuna total landings in the EPO
are at least 7–14 % linearly associated to oceanographic fluc-
tuations characterized by the MEI and ONI indexes, which
are used as predictors of the high frequency fluctuations
events El Niño o La Niña. On a longer timescale the Pa-
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cific Interdecadal Oscillation also plays a role, which is re-
flected in the negative gradient of the equation obtained, sug-
gesting that during cold periods (e.g., 2000–2025/2030) there
should be more tuna biomass in the water column, whilst in
warm period there should be less. This makes sense as dur-
ing a cold period upwelling processes prevail thus provid-
ing inorganic nutrients to increase photosynthesis at the sur-
face, consequently increasing phytoplankton biomass which
is the base of the trophic chain and therefore species at higher
trophic will have more energy available. On the contrary, dur-

ing El Niño or warm PDO (1979–1999) nutrient poor warm
water masses prevail, and hence the base of the trophic chain
has less energy to be spread to upper levels. Additionally,
tuna as any pelagic species will have to redistribute them-
selves to find colder and biologically richer water masses be-
cause warm waters are relatively low in dissolved Oxygen,
as (1) Oxygen is less soluble at higher temperatures and will
tend to diffuse back to the atmosphere (like CO2 and many
other dissolved gases); and (2) the lack of, or weak, pho-
tosynthesis process that transforms CO2 into O2; Lehodey
et al. (2010) reported natural mortality increased as habitat
parameters like temperature increases and dissolved Oxygen
decreases. With less dissolved Oxygen available tuna would
need to spend more energy to swim at higher speed just to
keep breathing (see, Fitzgibbon et al., 2007).

Under neutral conditions (MEI/ONI >−0.5 and < 0.5)
there is an important dispersion of fish landings, however
the highest landings occurred when the indexes are positive
but below 0.5; i.e. Neutral condition, according to the ac-
cepted definition (see NOAA, 2016). At extreme values of
MEI/ONI (<−1.0 and > 1.0), the non-linear (n= 3 to n= 6)
analysis suggests that tuna landings tend to decrease because
the habitat values become unsuitable for pelagic fish provok-
ing their redistribution (Lehodey et al., 2010). The statistical
analysis gave R2 values between 0.4 and 0.8 showings the
high association of landings and oceanographic events.

www.adv-geosci.net/42/83/2016/ Adv. Geosci., 42, 83–90, 2016
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Regarding fishing effort on FADs, it was found that the
catch per unit effort (CPUE) has a linear correlation of 7–
14 % with oceanographic conditions, which mirrors land-
ings. A CPUE of about 20 mt set−1 seems to be a represen-
tative average when MEI/ONI are between −0.5 and 0.5,
whilst at a positive extreme (> 0.5), the polynomial regres-
sion indicated that CPUE decreases, and the contrary oc-
curs at extreme negative (<−0.5) values of the indexes. This
finding could be an important insight for fishermen and fish
managers, who could make their fishing and managing plans
more accordingly to oceanographic conditions.

5 Conclusions

Even though landings seems not be the best parameter to be
correlated to ONI and MEI indexes oceanographic condi-
tions, it was found that there is a consistent 7–10 % of di-
rect influence. In terms of a larger time scale index, such
as the PDO, there is uncountable evidence that tuna fish
biomass is at higher levels when the PDO is on cold phase
(2000–2030). Ormaza-González et al. (2016) have found the
length and weight of Opisthonema spp (a type of sardine
fish called “pinchagua”) have a higher linear correlation up
to 40 % to MEI and ONI indexes when data for the fourth
quarter of the year was analyzed in time series 2000–2012
of these indexes. Similar outcomes where found when using
small pelagic fish correlated to cold phase PDO (Ormaza-
González et al., 2016). The analysis of the CPUE suggests
that fishermen and managers would expect higher CPUE
on FADs around 20 mt set−1 when indexes are below -0.5.
These results show that fishing and management of com-
mercial fish must be analyzed under the light of oceano-
graphic conditions, especially those dramatic episodes occur-
ring over short time scales, e.g. during La Niña 2010, when
Skip Jack landings dropped by around 36 %. Even slight vari-
ations in the oceanographic conditions may affect dramat-
ically the biomass of tuna, whose management (like with
many other species) is performed using the criterion of the
Maximum Sustainable Yield (MSY, e.g. Maunder and De-
riso, 2013), especially when managers are working with only
half of the carrying capacity of the population (K/2); the car-
rying capacity will be undoubtedly influenced by the studied
indexes.

Future research for better correlation work could include
using length, weight, diet content (to determine medium
trophic level), and working with data per quarter or month
would render perhaps better and higher correlation coeffi-
cients, and much clearer information that would help fish-
ermen and managers to improve their fishing plans and as-
sessment tools respectively. However, the present analysis
provides a first effort to predict the impact of oceanographic
conditions on fishing and vice versa over short and large time
scale.

6 Data availability

The data used were obtained through web sites: Oceano-
graphic El Niño Index (ONI) data are available at: http:
//www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml (see Smith et al., 2008; Null,
2013). Multivariate ENSO Index (MEI) data are available
at: http://www.esrl.noaa.gov/psd/enso/mei.ext/table.ext.html
(for details see Wolter and Timlin, 2011). Tuna Land-
ings in the EPO: IATTC (http://www.iattc.org/PDFFiles2/
FisheryStatusReports/FisheryStatusReport12.pdf (see
IATTC, 2014).
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