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Abstract. The Institute of Seismology of University of

Helsinki is building a new local seismic network, called

OBF network, around planned nuclear power plant in North-

ern Ostrobothnia, Finland. The network will consist of nine

new stations and one existing station. The network should be

dense enough to provide azimuthal coverage better than 180◦

and automatic detection capability down to ML −0.1 within

a radius of 25 km from the site.

The network construction work began in 2012 and the first

four stations started operation at the end of May 2013. We

applied an automatic seismic signal detection and event lo-

cation system to a network of 13 stations consisting of the

four new stations and the nearest stations of Finnish and

Swedish national seismic networks. Between the end of May

and December 2013 the network detected 214 events inside

the predefined area of 50 km radius surrounding the planned

nuclear power plant site. Of those detections, 120 were iden-

tified as spurious events. A total of 74 events were associated

with known quarries and mining areas. The average location

error, calculated as a difference between the announced lo-

cation from environment authorities and companies and the

automatic location, was 2.9 km. During the same time pe-

riod eight earthquakes between magnitude range 0.1–1.0 oc-

curred within the area. Of these seven could be automatically

detected. The results from the phase 1 stations of the OBF

network indicates that the planned network can achieve its

goals.

1 Introduction

Pyhäjoki at the eastern coast of the Bay of Bothnia is a po-

tential area for a new nuclear power plant. The area is char-

acterized by low-active intraplate seismicity, with earthquake

magnitudes rarely exceeding 4.0. Specific safety guide of In-

ternational Atomic Energy Agency (IAEA, 2010) states that

when a nuclear power plant site is evaluated a network of sen-

sitive seismographs, having a recording capability for micro-

earthquakes, should be installed to acquire more detailed in-

formation on potential seismic sources. The operation period

of the network should be sufficiently long to obtain a com-

prehensive earthquake catalogue for seismotectonic interpre-

tation (IAEA, 2010), and the monitoring of natural hazards

shall be commenced no later than the start of construction

and shall be continued up until decommissioning (IAEA,

2003). The data processing, reporting and network opera-

tion are advised to be linked to the national or regional net-

works. Earthquakes recorded within and near such a network

should be carefully analyzed in connection with seismotec-

tonic studies of the near region (IAEA, 2010).

Tiira et al. (2015) outlined a plan for a local seismograph

network OBF to be installed around the Pyhäjoki Nuclear

Power Plant (PNPP). An optimal configuration of ten seis-

mograph stations was proposed. The ten broad-band 3-C sta-

tions will be within 50 km from the planned power plant.

The authors state that the proposed network should be dense

enough to fulfill the IAEA (2010) requirements of azimuthal

coverage better than 180◦ and automatic event detection ca-

pability down to ∼ML−0.1 within a radius of 25 km from

the site. The earthquake location accuracy was anticipated

to be 1–2 km for horizontal coordinates within 25 km dis-

tance from the PNPP and the annual number of earthquakes

detected was estimated to be 2 (ML≥∼−0.1) within 25 km

radius and 5 (ML≥∼−0.1–∼ 0.1) within 50 km radius from

the PNPP (Tiira et al., 2015).

Institute of Seismology of University of Helsinki (ISUH)

started to build the proposed network in 2012. Building of the

OBF network was divided into two phases. Phase 1 included
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four new stations and they started operation at the end of May

2013. The rest of the network started operation in fall 2015.

Valtonen et al. (2012) reported the details on site selection,

construction and instrumentation of the stations. All the sta-

tions were installed on the ground surface. The main obsta-

cles in the site selection were lack of bedrock outcrops in the

vicinity of simulated station locations and willing landown-

ers to lease the land. These facts slightly changed the con-

figuration of the realized network compared to the simulated

optimal configuration. However, the changes did not impair

the azimuthal coverage or event detection capability of the

network (Valtonen et al., 2012). Furthermore in a report by

Kortström et al. (2012) ISUH defined a seismic monitor-

ing strategy for PNPP site area. Following the IAEA (2010)

guidelines, real-time monitoring of the site area is integrated

with the automatic detection and location process operated

by ISUH. The monitoring strategy is introduced in Sect. 2.

The objective of this study is to evaluate the detection and

location capability of the planned network. We will eval-

uate whether the realized network meets the requirements

set to the simulated network. Moreover, we will investigate

whether the four new stations already improve detection ca-

pability and location accuracy of PNPP site area compared

to national network. In this study we focus on automatic pro-

cessing of the data collected from the new stations. Auto-

matic analysis results are presented from the network consist-

ing of the four new stations and the existing nearby stations

of the national seismic networks of Finland and Sweden.

2 Seismic monitoring strategy for OBF network area

Continuous waveform data from OBF network will be

transmitted in real-time via internet to ISUH data server,

where they will be transferred to the routine data analy-

sis and archival systems. Thereafter, the recordings are pro-

cessed with automatic software suitable for detecting micro-

earthquakes in an intraplate seismotectonic environment. The

main objective of the automated event processing is to dis-

tinguish seismic events from the continuous seismograph

recordings for further analyses. Basically, the routine breaks

up into three sub-tasks: (1) detection of seismic signals from

the background noise; (2) identification and association of

detected seismic phases; (3) location and identification of

seismic events, determination of source depths and magni-

tudes.

Detector programs are typically based on STA / LTA ratio

methods of which many dates back to works of Allen (1978

and 1982) and Withers et al. (1998). Parameters steering the

detector program must be fine-tuned as per the events of in-

terest and noise conditions at the stations. For example, prior

to STA / LTA detection process the recordings are usually

filtered with band-pass filters that are optimized for the fre-

quency content of the target events (teleseismic, regional, or

local). Several methods are also available for identification of

the detected phases and for their association to single events

(e.g. Tong, 1995; Withers et al., 1999; Satriano et al., 2008).

The optimal method depends on both the geographical ex-

tent of the network and the type and density of stations. The

current ISUH system is described in Sect. 3.

The automatic processing of OBF network data starts with

the existing ISUH software. Due to differences in monitor-

ing target between ISUH and OBF networks, the processing

is separated into two parallel processes. For regional moni-

toring purposes, data from two sub-stations of OBF network

will be included in the automatic event detection and location

system of ISUH. This system monitors events above the mag-

nitude threshold of the national network, currently ∼ML 0.9

(Tiira et al., 2015) in the PNPP site area. The inclusion of all

the data from the dense OBF network into the sparse regional

network data is not meaningful, because it would increase the

number of noise detections in the system that is optimized for

sparse regional network.

In the second process earthquakes smaller than threshold

magnitude of the national network within PNPP area are

searched with separate event processing system customized

for OBF network. This system will utilize OBF stations and

the nearest online stations of the Finnish and Swedish na-

tional networks.

3 Event detection and location system

As summarized in Sect. 2, automatic processing of the OBF

network data is separated into two parallel systems, aimed

for regional and local monitoring. Both systems utilize ISUH

automatic event processing software but with different pro-

cessing parameters and network configurations. The system

is based on network processing of three-component (3-C)

stations. At a single 3-C site the detection is done with ba-

sic STA / LTA-detector. The code used is an implementation

of Ruud and Husebye (1992), which, in turn, uses “predicted

coherence” measure of Roberts et al. (1989). The original

Ruud and Husebye (1992) code produced fully automatic

single station bulletin. Location of regional events was based

on back azimuth and travel time difference of automatically

identified P and S phase detections.

In the ISUH automatic processing of single 3-C stations

the association and identification of local and regional P and

S phases is handled differently. The aim of single station

processing is not to produce reliable event bulletins but to

build event seeds for network processing. The event seeds

are formed as follows: (1) every detection in a detection log

is considered as a possible P phase signal. (2) Every detec-

tion following the possible P phase within a certain time

window in the same detection log is considered a possible

S phase belonging to the same event as the preceding P .

(3) Event seeds are formed by computing location for all pos-

sible P and S pairs using P and S signal onset times and back

azimuth estimate.
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As a result single station event detection log contains a

large amount of false events intermingled with real event de-

tections. The next step is to associate phases from the rest of

the network with all event seeds. This association is done by

calculating theoretical P and S arrival times for every sta-

tion of the network and for every event seed of single station

event logs. A pick in single station’s detection log is associ-

ated with an event seed as P or S phase if its time matches

with theoretical arrival time of P or S phase in a given time

window. At this point the theoretical arrival times are cal-

culated for all local or regional phases, namely Pg/Pb/Pn

and Sg/Sb/Sn phases. Pg and Sg are direct waves in the up-

per crust, Pb and Sb are waves in the lower crust or along

the Conrad discontinuity, and Pn and Sn are waves refracted

below the Mohorovicic discontinuity (Willmore, 1979). An

event seed is selected for further processing if the number of

associated phases exceeds a threshold value.

At this stage multiple solutions may occur for the same

event. Two or more solutions are considered originating from

the same event if their location and time matches within cer-

tain limits. The most stable solution is selected for another

phase association round, which is done with stricter associa-

tion rules. After the second association round, the events are

ready for final location, identification and magnitude deter-

mination. The 2-step association method allows the applica-

tion of low detection thresholds at single stations, a necessary

condition for detecting very weak seismic signals. A simpli-

fied flow chart of the network processing is shown in Fig. 1.

In both single 3-C station and network processing the lo-

cation of the events are done with HYPOSAT location pro-

gram (Schweitzer, 2001). HYPOSAT can use versatile data

to obtain source location. ISUH system utilizes single ar-

rival times of P or S phases, travel time difference of P and

S phases at the same station, and back azimuth observations.

The 1-D velocity model used by ISUH to locate of seismic

events in the Fennoscandian shield is shown in Table 1. Auto-

matic solutions include origin time, latitude and longitude of

the epicenter, focal depth, magnitude, travel-times of signals

at each station and error statistics for each of the estimated

parameters. The depth of the event is always constrained to

zero during the iterations, because accuracy of the automatic

arrival times is not good enough for depth estimation. In ad-

dition, more than 95 % of the local and regional events in

this area are near surface explosions. Fixed depth often helps

achieving more stable solutions for the other source parame-

ters as well. For events identified as earthquakes, the source

depth is estimated during interactive analysis. That is, the lo-

cation program is allowed to iterate the depth with carefully

picked phase onsets and/or estimate the depth using depth

phases.

Figure 1. A simplified flow chart of ISUH automatic event process-

ing system.

Table 1. The 1-D velocity model used in the location procedure.

Layer thickness Vp Vs

(km) (km s−1) (km s−1)

15.0 6.20 3.62

25.0 6.70 3.84

40.0 8.03 4.64

8.50 4.75

4 Preliminary data processing system for OBF network

At the end of May 2013 the first four new stations of OBF

network started operation. We started the automatic data pro-

cessing already with the first four stations in order to gain

experience of stations’ performance as soon as possible. The

network used for automatic processing comprised 13 sta-

tions: five stations in PNPP area (OBF0, OBF4, OBF6, OBF7

and OUF) and the closest eight stations from the national

seismic networks of Finland (OUL, KEF, SUF, TOF, VAF)

and Sweden (BURU, KALU, UMAU). The station locations

are presented in Fig. 2 together with the predicted minimum

magnitude thresholds calculated for this setup. The thresh-

old magnitude map was calculated with same method as in

the initial network simulations of Tiira et al. (2015). They

derived a relation between event magnitude and maximum

distance at which both P and S phase can be automatically

detected for that event. Data for the modeling were auto-

matic locations of earthquakes from ISUH database (Tiira et

al., 2015). The maps are calculated by forming a 0.1◦× 0.1◦

grid over the network area. Every grid point is a possible

earthquake epicenter from which the distances to the stations

are calculated. The distance to the third closest station is then

converted to the minimum detectable magnitude at every grid

point. This ensures that there should be phase readings from
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Table 2. Detection parameters for Ruud and Husebye (1992) signal detector. First two filter channels are intended for S type signals and

latter two for P type signals. STA / LTA detection threshold 1 (Th1) is used together with coherence threshold (Coh) and threshold 2 (Th2)

alone. Duration (Dur) is minimum signal duration to accept detection.

Low cut High cut Step length STA length LTA length Th1 Coh Th2 Dur

[Hz] [Hz] [s] [s] [s] [s]

2.0 10.0 0.08 0.16 0.64 5.1 0.9 3.0 0.8

6.0 20.0 0.05 0.10 0.40 5.1 0.9 3.0 0.8

5.0 20.0 0.08 0.16 0.64 3.0 0.3 3.35 0.8

15.0 40.0 0.05 0.10 0.40 3.0 0.3 3.55 0.8

at least three stations, as required by ISUH automatic loca-

tion process.

All OBF stations are equipped with similar instruments,

that is, Nanometrics Trillium Compact seismometers and

EarthData PS-6 digitizers. The sampling rate of the contin-

uous data acquisition is set to 250 sps. For data acquisition

we use normal miniPC computers with Linux operating sys-

tem and SeisComP3 software. We applied the processing sys-

tem described in Sect. 3 with some modifications: The event

seeds were searched only from the five stations within the tar-

get area and higher frequency bands for signal detection were

applied to the new OBF stations. The main detection param-

eters for initial signal detection are presented in Table 2.

During the test period of the system, from the end of May

to December 2013, we focused mainly to the location accu-

racy obtained with the system. For that purpose explosions

from 50 km radius from PNPP site were identified and asso-

ciated to known mines and quarries. Information about blast-

ing sites and times were obtained from environmental author-

ities and companies carrying out such works. The location er-

ror was calculated as a difference of announced location and

computed automatic location. Accuracy of automatic event

solutions of OBF network was also compared to automatic

event solutions obtained by regional network. We utilized ex-

plosions from the most active open pit quarry in the area, the

Laivakangas gold mine.

5 Results

During end of May–December 2013 the automatic analysis

system of the OBF network produced 214 event solutions

inside the predefined area of 50 km radius around the PNPP

site. Of those solutions 94 were real seismic events and 120

were identified as spurious events, that is, events generated

by erroneous phase and/or noise associations. The number

of real automatic event detections almost doubled in the area

compared to the regional monitoring system, which produced

51 automatic event detections for the same time period.

Location accuracy tests were done to a total of 74 events,

which could be identified with known place and time. The

events and blasting sites are shown in Fig. 3 and the results

in Table 3. The average location error of automatic locations

was 2.9 km. An experienced seismic analyst also located the

Figure 2. Online seismic stations used by ISUH in the automatic

event processing iof PNPP area. A circle denotes a 3-C station of

the OBF-network. A triangle denotes a 3-C station of the permanent

national networks of Finland and Sweden. Background map is the

predicted threshold magnitude calculated for the network shown on

the map. The red dashed circumference of 50 km radius confines the

target area of the network. The inset map shows the location of the

study area and the PNPP site is marked with a black square.

events interactively. Average location error of these locations

for the same events was 1.2 km. In the area between stations

OUF, OBF6 and OBF7, which is a near complete part of the

network, the average location error was 2.4 km for automatic

solutions and 0.8 km for manual solutions. Altogether 19 ex-

plosions from the Laivakangas gold mine were automatically

located with both local and regional systems. The average lo-

cation errors of OBF network and regional network were 3.3

and 5.4 km, respectively.
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Table 3. Results of location accuracy tests.

Location error [km] Automatic locations Manual locations

50 km radius from PNPP 2.9 1.2

Area between OBF6, OBF7 & OUF 2.4 0.8

OBF network Regional network

Laivakangas gold mine, automatic locations 3.3 5.4

Figure 3. Automatic locations of events from known blasting sites.

Blasting sites are marked with red stars except the Laivakangas gold

mine, which is marked with green star. Automatic event locations

are marked with black crosses. Blue circles are the new seismic

stations in the OBF area and blue triangle the pre-existing station

OUF. The dashed circles define areas of 25 and 50 km radii from

the PNPP (black square).

After the visual inspection of the automatic analysis re-

sults, three of the detected events were identified as earth-

quakes. The local magnitudes of these events were 0.5, 0.8

and 1.0 calculated using a local magnitude scale by Uski

and Tuppurainen (1996). The regional network had also de-

tected the two largest earthquakes. Finally, the seismograms

of OBF network were scanned visually to pick weak events

missed by the system. As a result five additional earthquakes

were found within 50 km radius of PNPP site. Magnitudes of

these earthquakes ranged from 0.1 to 0.4. Locations of these

undetected earthquakes were compared to the predicted de-

tection threshold map of the first stage OBF network, which

suggests that the magnitude 0.4 earthquake should have been

automatically detected. Figure 5 is shows the recordings of

the magnitude 0.4 earthquake with manual phase picks. The

automatic processing related to these undetected earthquakes

Figure 4. Locations of earthquakes (stars) that occurred at the PNPP

area between the end of May and December 2013. Earthquakes

marked with white stars were detected automatically by both re-

gional and local OBF networks. Green star denotes earthquake that

was detected automatically only by the OBF network. Earthquakes

marked with yellow stars were detected by the OBF network af-

ter readjustment of detection parameters. Earthquake marked with

red star remained undetected. White circles denote the new OBF

stations and white triangle is the pre-existing station OUF at the

area. Dashed red circle defines the area of 50 km radius from the

PNPP site (red square). Background shows the predicted magnitude

threshold map for the network used in local automatic system (cf.

Fig. 2).

was examined closely. As a result adjustments were made to

STA and LTA window lengths of single station processing

and phase association rules of network processing. Record-

ings of earthquakes were reprocessed with new settings and

now four more earthquakes were automatically detected. As

a result the automatic system detected smaller earthquakes

than magnitude threshold map predicts (Fig. 4). Details of the
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Table 4. Source parameters for earthquakes recorded by OBF in 2013. Origin time, latitude and longitude in WGS-84 coordinate system,

depth (F =fixed during the location process) and local magnitude ML.

Date Time, UTC Lat (◦ N) Lon (◦ E) Depth (km) ML

1 26.05.2013 00:23:02.5 64.585 24.867 24.5 1.0

2 16.07.2013 02:07:49.4 64.428 24.748 24.0 0.1

3 27.07.2013 12:52:45.8 64.230 23.269 10.7 0.3

4 08.11.2013 03:24:29.7 64.102 24.350 6.8 0.1

5 07.12.2013 20:44:13.1 64.623 24.979 24.7 0.5

6 07.12.2013 20:44:19.5 64.596 25.012 20F 0.1

7 16.12.2013 17:31:49.8 64.424 24.731 8.9 0.8

8 17.12.2013 09:43:03.0 64.319 24.146 25.7 0.4

Figure 5. Vertical recordings of the ML 0.4 earthquake in Kala-

joki 17 December 2013 at the OBF-stations. The recordings are

presented with increasing station to epicenter distance. The arrival

times of first P and S arrivals are marked. Recordings are filtered

with a 2–30 Hz band pass filter.

all earthquakes recorded by the OBF network in the PNPP

area are given in Table 4.

Background noise of the new sites was also studied. Short

test measurements had been already made during site sur-

veys, which suggested that the noise levels are comparable

to other locations in Finland (Valtonen et al., 2012; Korja et

al., 2011). The analysis of the new sites confirmed that the

overall background noise is at the same good level as in the

most of the Finnish stations. Analyses were made using pqlx-

software (McNamara and Boaz, 2005). Figure 6a–e shows

the probability density functions of the four new stations and

pre-existing station OUF at the area. Differences between

OUF and new OBF stations at low frequency (long period)

part of the spectra are due to the different seismometers used

in these stations. OUF is equipped with Streckeisen STS-2

seismometer while the Nanometrics Trillium Compact seis-

mometers of the OBF stations are less sensitive at low fre-

quencies. There are also variations in high frequency part of

the noise spectra between the stations. The new OBF stations

have higher sampling rate (250 sps) compared to station the

OUF (100 sps). Thus, noise spectra of new OBF stations con-

tain more site-specific variations from short distances.

6 Discussion

IAEA 3.30 (2010) guidelines state that when a nuclear power

plant site is evaluated a network of sensitive seismographs

having a recording capability for micro-earthquakes should

be installed to acquire more detailed information on poten-

tial seismic sources. In areas with high seismicity the active

faults are seen clearly when large number of earthquakes are

located evenly inside of error margins of potential fault lines.

In such areas low detection threshold is not a necessity. In ar-

eas of low seismicity both low detection threshold and good

location accuracy are substantial when trying to map active

faults using earthquake locations. When location accuracy is

good, even single events can be associated with certain faults,

whereas location errors measured in many kilometers make

the single observations useless in seismotectonic interpreta-

tions (Korja et al., 2011).

Location accuracy gained with phase 1 stations of the OBF

network is comparable to earlier studies (e.g. Bondár et al.,

2004; Korja et al., 2011; Uski et al., 2011) with similar con-

ditions. Our results show that the overall location accuracy

of manual locations is already at the level predicted by the

network simulations (Tiira et al., 2015). Furthermore, the lo-

cation accuracy results indicate that the accuracy of both au-

tomatic and manual locations is best at the near complete part

of the network, that is, in between of stations OUF, OBF6 and

OBF7. It is a known fact that the location accuracy can be

improved with accurate local velocity model and sufficient

number of evenly spaced seismic stations near the source

(e.g. Bondár et al., 2004; Uski et al., 2011). If the source is

outside the network, in other words the maximum azimuthal

gap of event location is greater than 180◦, the location accu-

racy decreases rapidly (Tiira et. al., 2015). In addition loca-

tion accuracy can also be improved by applying relative loca-

tion methods (e.g. Waldhauser and Ellsworth, 2000; Fehler et
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Figure 6. A spectral density function at station OBF0 (a), OBF4 (b), OBF6 (c), OBF7 (d) and OUF (e). The background noise at the station

is seen as regularly observed energy levels (blue, green, yellow and red). The more scarce energy levels (pink and violet) are associated with

sudden disturbances such as signals of seismic events. The grey lines denote the global average of low and high noise level models (Peterson,

1993).

al., 2000; Castellanos and Van der Baan, 2013). In summary,

our results with phase 1 stations of the OBF network implies

that the complete OBF network can achieve a good location

accuracy within 50 km radius of PNPP site, at least at the

in-land part of the network.

The new stations helped to find six small (ML < 0.8) earth-

quakes, which would probably have remained undetected

using national network only. The number of ML > 0 earth-

quakes found in 2013 is in fact greater than what was pre-

dicted by Tiira et al. (2015). Most of the small earthquakes

would still have remained undetected without visual scan-

ning of the waveforms. The automatic analysis system ap-

plied to the phase 1 stations of OBF network performed quite

poorly. The false alarm rate was relatively high and the sys-

tem missed one earthquake it should have detected accord-

ing to predicted detection capability. This was somewhat ex-

pected as the applied system was not properly tuned for local

distances. Nevertheless, preliminary results look promising
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for the ultimate goal of the network. Our experience from

the regional processing of Finnish networks and contributing

stations from neighboring networks has proven that event as-

sociation rejects spurious events effectively when number of

stations increases. Thus, we expect the false alarm rate to de-

crease when the network is complete and number of stations

doubled from five to ten. At the same time we expect that

number of automatically detected earthquakes will increase

significantly.

The automatic data processing system used in Sweden and

Iceland, called SIL (Bödvarsson and Lund, 2003), has simi-

larities with our automatic processing software. The software

uses STA / LTA detector to initial phase picking and the pro-

cessing is divided in single station and multi station parts.

The SIL system was originally developed to monitor auto-

matically microearthquake activity around Icelandic volca-

noes where it has shown the capability of automatic evalu-

ation of more than 1500 earthquakes per day (Bödvarsson

and Lund, 2003). In Sweden the SIL system is applied to

the data of the Swedish National Seismic Network (SNSN)

that consists of more than 60 stations with station spacing of

about 100 km. The network is sufficiently sensitive to record

all earthquakes down to a magnitude 0.5 within the network

(Bödvarsson, 2011).

Lindblom (2011) studied microearthquakes along Pärvie

fault of Northern Sweden. She set up a temporary network

to improve detection capability and location accuracy of the

SNSN. The network comprised seven temporary stations and

a subset of suitable SNSN stations in the study area. She

used the SIL system to process the data and as a result, like

in our study, the number of spurious events was large. Also

the explanation of false alarms is similar to our study: “the

network’s standard automatic event detection and location

procedures were not optimal for the temporary station data

set” (Lindblom, 2011). Nevertheless, Lindblom (2011) could

increase the number of automatically detected earthquakes

with temporary stations compared to the SNSN. Moreover,

by using time-domain cross-correlation detector the num-

ber of initial automatic detections was doubled (Lindblom,

2011). Waveform correlation is a well-established technique

to identify close-lying events, which produce very similar

waveforms at same stations if the source mechanism is sim-

ilar. Waveform correlation is especially powerful in detect-

ing signals that fall below the detection capability of energy

based detectors as shown in previous studies like Gibbons et

al. (2007) in Norway and Withers et al. (1999) in New Mex-

ico.

The INGV National Seismic Network in Italy has under-

gone large improvements since the beginning of the new mil-

lennium, as described by Amato and Mele (2008). The im-

provements included tripling of on-line stations from less

than 100 to more than 200 and having three component

broad-band sensors for the majority of the stations. Com-

pared to the year 2000, the INGV network doubled the num-

ber of earthquake detections in year 2006. Also the magni-

tude completeness of the whole network region improved

from 1.7 in year 2006 to 2.4 in year 2000. Quality of au-

tomatic locations was found to be good, meaning less than

10 km difference to manual location, inside the network with

the improved network (Amato and Mele, 2008). These find-

ings support our findings that with sufficient number of well-

situated stations the OBF network can achieve its goals.

The development of automatic processing system of the

OBF network will continue in coming years. The current

system needs refining of parameters in every stage of pro-

cessing and new methods should be introduced. In the fu-

ture usage of cross-correlation detector could increase the

number of detected small earthquakes and the location ac-

curacy can be further improved with relative location meth-

ods. These methods will be applied after sufficient amount of

ground truth data from earthquakes and chemical explosions

has been recorded with all stations of the completed network.
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