
Advances in Geosciences, 4, 45–50, 2005
SRef-ID: 1680-7359/adgeo/2005-4-45
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Advances in
Geosciences

DIVA: an iterative method for building modular integrated models

J. Hinkel

Potsdam Institute for Climate Impact Research GPO Box 601203 14412 Potsdam, Germany

Received: 1 August 2004 – Revised: 1 November 2004 – Accepted: 15 November 2004 – Published: 9 August 2005

Abstract. Integrated modelling of global environmental
change impacts faces the challenge that knowledge from the
domains of Natural and Social Science must be integrated.
This is complicated by often incompatible terminology and
the fact that the interactions between subsystems are usually
not fully understood at the start of the project. While a mod-
ular modelling approach is necessary to address these chal-
lenges, it is not sufficient. The remaining question is how
the modelled system shall be cut down into modules. While
no generic answer can be given to this question, communi-
cation tools can be provided to support the process of mod-
ularisation and integration. Along those lines of thought a
method for building modular integrated models was devel-
oped within the EU project DINAS-COAST and applied to
construct a first model, which assesses the vulnerability of
the worlds coasts to climate change and sea-level-rise. The
method focuses on the development of a common language
and offers domain experts an intuitive interface to code their
knowledge in form of modules. However, instead of rig-
orously defining interfaces between the subsystems at the
projects beginning, an iterative model development process
is defined and tools to facilitate communication and collabo-
ration are provided. This flexible approach has the advantage
that increased understanding about subsystem interactions,
gained during the projects lifetime, can immediately be re-
flected in the model.

1 Introduction

This paper presents a method for building modular integrated
models. The method was developed and first applied within
the EU project DINASCOAST (Dynamic and Interactive As-
sessment of National, Regional, and Global Vulnerability
of Coastal Zones to Climate Change and Sea-Level Rise,
www.dinas-coast.net. The aim of the three-year project is

Correspondence to:J. Hinkel
(hinkel@pik-potsdam.de)

to develop a dynamic, interactive, and flexible tool that will
enable its users to quantitatively assess coastal vulnerability
to sea-level rise and explore possible adaptation strategies.
Underlying are various climatic and socio-economic scenar-
ios and adaptation policies on national, regional, and global
scales covering all coastal nations. This tool is called DIVA,
Dynamic and Interactive Vulnerability Assessment, and is
centred around an integrated model.

DINAS-COAST was motivated by apparent limitations of
previous global vulnerability assessments (Hoozemans et al.,
1993; Baarse, 1995), including: the obsolescence of under-
lying data sources and the static, one-scenario approach. To
overcome these limitations DINAS-COAST combines data,
scenarios, and assessment models into an integrated tool, and
makes it available to a broad community of end-users on a
CD-ROM.

For the development of such a tool expert knowledge from
the domains of Natural and Social Science must be inte-
grated, calling for a modular approach to model develop-
ment. Individual partners independently develop modules
representing coastal sub-systems which are then “plugged”
together to form one integrated model. While a modular
modelling approach is necessary to address these challenges,
it is not sufficient. The remaining question is how the mod-
elled system shall be cut down into modules. While no
generic answer can be given to this question, communica-
tional and organisational tools can be provided to support the
process of modularisation and integration.

Facing these challenges the DIVA method for modular in-
tegrated modelling was created. The method organises the
development process and facilitates communication and co-
operation. The actual DIVA tool is currently being built us-
ing this method. While the DIVA tool is specific to DINAS-
COAST, the DIVA method can be reused in other contexts
with similar requirements.

This paper first analysis the DINAS-COAST requirements
as perceived from the perspective of model integration and
software development (Sect. 2), then explicates some con-
cepts of the modelling process needed for the following

www.dinas-coast.net


46 J. Hinkel: DIVA: an iterative method for building modular integrated models

discussions (Sect. 3). Section 4 explores the space of so-
lutions to the requirements and Sect. 5 presents the DIVA
method as a possible answer. Finally Sects. 6 and 7 list some
limitations and conclusions, respectively.

2 Requirement analysis

The development of an integrated model faces several chal-
lenges. Knowledge from the domains of Natural and So-
cial Science must be integrated. This is complicated by the
often incompatible terminology, differing model types and
modelling styles, and also by the fact that domain experts
are distributed over various institutes worldwide. Frequent
project meetings are not possible. Most of the model devel-
opment must be coordinated via email, web-sites, and tele-
phone calls.

While the requirements listed above are common to in-
tegrated modelling, some special challenges needed to be
addressed in DINAS-COAST. Due to lack of an appropri-
ate data source the model had to be developed simultane-
ously with its proper world-wide database (see Vafeidis et al.,
2003). The interactions between sub-systems were not fully
understood at the start of the project; instead, such under-
standing is a major result of the project itself. Both circum-
stances necessitated a flexible model design that accounts for
the incorporation of new knowledge in form of data, algo-
rithms, or sub-system interactions at any stage during the de-
velopment process. Finally the DINAS-COAST model, to-
gether with the database, is meant to be made available to a
broad community of end-users, such as scientist, politicians
and coastal-planers. This calls for an easy-to-use graphical
user interface and an efficient model.

3 Modelling process

This Section explicates four concepts involved in the mod-
elling process that are needed for the following discussions.

1. Ontology: The modelling process starts with some con-
cepts that we have at our disposal to perceive the world.
It is good practise, especially in integrated modelling, to
make this basic conceptualisation explicit. An explicit
specification of a conceptualisation shall be called on-
tology.

2. Mathematical problem: Based on the ontology a
mathematical problem is formulated. For example one
might have a system of differential equations and be in-
terested in knowing its evolution over time (initial value
problem).

3. Algorithm: Since in most cases the mathematical prob-
lem cannot be solved analytically, it’s solution must be
approximated by applying numerical methods. The re-
sult of this step is the numerical solution or the algo-
rithm.

4. Computer model: The last step considered here is the
implementation of the algorithm in a programming lan-
guage. This step yields the executable computer model.

4 Modular integrated modelling

An integrated model is composed of various submodels. It
is evident that such a model, like other complex software,
should be built in a modular rather than monolithic fashion:
all contributers provide their knowledge about sub-systems
in form of self-contained components (modules).

While modularity is a necessary answer for integrated
modelling, it is not sufficient. Among others, four questions
need to be addressed:

1. At which stage of the modelling process shall the inte-
gration take place?

2. What are the modules’ interfaces or how shall the sys-
tem be decomposed into sub-systems?

3. Which technology or software shall be used?

4. How shall the process of model integration be organ-
ised?

The following Subsections explore possible answers to
these questions and motivate the decisions taken in the case
of DINAS-COAST.

4.1 Integration level

The first question which arises in integrated modelling is at
which stage of the modelling process the integration shall
take place. Clearly, model integration has to start with a com-
mon ontology. Any attempt without a common conceptuali-
sation of the system to be modelled is likely to fail. The re-
maining question is whether to integrate mathematical prob-
lems, algorithms, or executable computer models.

From an idealistic point of view models should be inte-
grated at the level of the mathematical problems. Having
a complete mathematical formulation of the system allows
for careful selection of appropriate numerical methods and
leads to stable and efficient algorithms. In praxis this route is
seldom taken. Reasons for that are: the existence of legacy
computer models; the need for a lot of cooperation at an early
stage of the project; unclear linkages between sub-systems
and that it is uncommon to “think” about integrated mod-
elling in terms of mathematical problem specifications rather
than algorithms and computer programs.

From a pragmatic point of view it makes sense to integrate
existing computer models. Legacy models, in which a lot
of development time was invested, can then be reused. The
flip-side of the coin is that the coupling of computer mod-
els involves a lot of technical issues, due to the heterogeneity
in platforms, computer languages, compilers and data struc-
tures involved. A further disadvantage of this approach is
that due to the absence of a complete specification of the



J. Hinkel: DIVA: an iterative method for building modular integrated models 47

mathematical problem it often remains unclear whether the
numerics of the coupled computer models adequately repre-
sent the problem.

In the case of DINAS-COAST an intermediate approach
was taken: the models were integrated at the level of the al-
gorithms. Thus the project partners were free to solve their
mathematical problem individually, but then had to imple-
ment the algorithms as modules in a common programming
language. This route could be taken, because there were no
legacy models to include.

4.2 Module interfaces

An elementary question of any modular approach to inte-
grated modelling is how the modelled system shall be de-
composed into sub-systems or, phrased differently: What are
the modules’ interfaces?

An efficient way of developing an integrated model would
be to define specialised interfaces between the modules:
Each module has its proper interface, specific to the sub-
system it represents. That way, the data-flow between the
modules is fixed with the definition of the interfaces. The de-
velopment process would then be straight forward: At the be-
ginning of the project the interfaces are defined, then the de-
velopers program their modules concurrently in accordance
with the interface specification. At the end of the project the
whole model is plugged together.

However, a distinguishing feature of interdisciplinary re-
search is that interactions between subsystems are usually not
fully understood at the start of the project. General interfaces
that provide the freedom to define the data-flow between the
modules during the course of the project are required. In the
approach presented here all the modules have identical in-
terfaces. They share a reference to the model’s global state
and are allowed to perform any read or write operation on it.
Thus the actual data-flow between the modules is not fixed,
offering the flexibility for taking advantage of the interdisci-
plinary learning process during the project’s lifetime.

The generality of the interfaces has implications on the
development process. While specialised interfaces would
not require extensive collaboration between partners during
module development, general interfaces do so. To organise
the collaboration a rigorously defined iterative development
process is introduced. Module development takes place in
two phases: First, the modules are programmed individually
with the freedom to read and write any property of the sys-
tem’s sate. In the second phase, the actual data-flow between
the modules is analysed jointly. The two phases are iterated
until a satisfactory result is achieved. A detailed description
of the iterative development process is found in Sect. 5.2.

4.3 Technology

A wealth of methods and technologies from software engi-
neering, like for example object-oriented programming or
component technologies, are based on the concept of modu-
larity. The necessity to build complex and integrated models

has brought these techniques to the modelling communities
and triggered the development of modelling frameworks.

Frameworks provide a conceptual frame, that is an abstract
ontology for certain classes of the problems. Frames often
support one (or several) modelling paradigms. For exam-
ple an object-oriented framework for agent-based modelling
might provide classes for agents, organisations, and environ-
ments. Models implemented in a framework use its basic
concepts and specialise them further to their own needs.

An up-to-date overview of modelling frameworks de-
veloped within the environmental modelling community is
given by Argent (2003). Most approaches, just like the one
presented here, tackle model integration at the algorithmic
level of the modelling process. Consequently, sub-models
must be implemented in a framework-specific language. The
route to integrate existing computer models implemented in
different languages or on different platforms is taken by Le-
imbach and Jaeger (2004). Few approaches support model
integration at the stage of the mathematical problem speci-
fication. Examples are the M software environment (Jos de
Bruin, 1996) and the declarative modelling approach (e.g.
Muetzelfeldt, 2004). Other mathematical approaches can be
found within the the Decision Support Community. See Dolk
(1993) for an introduction.

In the case of DINAS-COAST it was decided to develop
a new framework. This was motivated by the will to provide
the project partners with a very simple and efficient interface
for expressing their knowledge. To this end the framework
has to provide the “right” framing. If it frames too little a lot
of coding needs to be done to express the specific problem.
If it frames too much some aspects of the problem cannot be
represented in the frame. A second motivation for developing
something new was the aim to tightly couple the framework
to tools supporting the actual process of integrated model de-
velopment.

4.4 Organisation

Model integration is an organisationally challenging and
communication intensive process. While there is a wealth of
modelling frameworks framing model design, there is little
framing communication and the process of model develop-
ment. Model documentation and meta-data are first steps in
the right direction (see for example Rahman et al., 2003).

The DIVA-Method emphasis and structures the process of
integrated modelling. This necessity arose specifically from
the requirement, that the model must be flexible to account
for changes in interfaces, algorithms, and data-structures at
any stage of model development.

5 The DIVA Method

The DIVA Method is a method for building modular inte-
grated models by distributed partners. It consists of a con-
ceptual frame (Sect. 5.1), an iterative development process
(Sect. 5.2), a generic model (Sect. 5.3), and a build and



48 J. Hinkel: DIVA: an iterative method for building modular integrated models

Fig. 1. A generated Java feature class.

documentation tool (Sect. 5.4). The first two sub-sections
describe the method from the point of view of the scientists
developing the modules, while the last two sections deal with
the technical implementation. The DIVA Method was de-
signed to be generic and can be applied to problems with
similar requirements as DINAS-COAST.

5.1 The frame

The DIVA Method provides, just like any other modelling
framework, a conceptual frame for modelling. Only what
can be expressed with the frame’s concepts can be modelled
by the DIVA Method. For modelling dynamical systems con-
cepts for expressing static information about the system (data
model) as well as concepts for representing the system’s dy-
namics are needed.

The statics of the system is represented by a relational-
data model consisting of geographic features, properties, and
relations. The geographic features represent the real-world
entities, like rivers or countries. Properties capture the quan-
titative information about the features; e.g. a country might
have the property area or a river the property length. Finally,
relations describe how the features are structured. For exam-
ple the feature region might contain several country features.

The dynamics of the system is represented by first-order
difference equations: the state of the system is a function of
the state at the last time-step and the drivers. All properties
of the features must be classified according to the role they
play in the dynamics into the four categories: driver, state
variable, diagnostic variable and parameter. For example the
country’s area would most likely be static, that is a parameter,
while its population might be driving the model.

5.2 The development process

The first step of the development process consists in defin-
ing the model’s ontology: Given the abstract frame the spe-
cific features, properties, and relations which constitute the

Fig. 2. Module linkages in the DINAS-COAST model. Ovals rep-
resent the modules, boxes represent data, the drawn through arrows
represent the flow of data during one time step, and the dotted ar-
rows represent the data fed into the next time step.

modelled system must be specified. The main part of the
ontology is the list of system properties which contains the
property names, the features they belong to, their type (that is
whether they are drivers, parameters, or variables), their data
type (e.g. float, integer), and some other meta-information.
The compilation of the ontology is a joint responsibility of
the project consortium.

The ontology is then automatically translated into Java
source code by the DIVA Build Tool (Sect. 5.4). For each
feature one class is generated. The class contains public
member fields for the feature’s properties. Relations between
the features are represented by class composition. Figure1
shows generated code for a feature called country. The class
has four public member fields: the first three hold the fea-
ture’s properties (area, population, and gdp) and the last one
points to the region the country belongs to.

In the next step the project partners code the algorithms.
They express their knowledge about the dynamics of the sys-
tem in form of difference equations written in Java and using
the generated feature classes. Since now the model’s ontol-
ogy is hard-coded an algorithm will only compile if it is con-
sistent with the ontology. Related algorithms are grouped
into modules. Before a module is submitted for inclusion
into the integrated model it is run and validated stand-alone.

The last step of the development process consists in the
analysis of the modules, their linkages, and the validation of
the complete model. Whenever a new version of a module is
submitted the build tool automatically updates the project’s



J. Hinkel: DIVA: an iterative method for building modular integrated models 49

web-site, which offers documentation and the new model for
download. Figure2 shows a generated document which vi-
sualises the data-flow between the modules of the DINAS-
COAST model. On the basis of this graph the develop-
ers analyse the interactions between the modules and decide
which changes are to be made in the next iteration of the de-
velopment process.

Figure 3 summarises the work-flow of the development
process. It also includes the database and the graphical
user interface, which however are discussed elsewhere (see
Vafeidis et al. (2003) andhttp://www.demis.nl/home/pages/
products.htm). Knowledge about the modelled system en-
ters the process via four categories: (i) the model’s ontology;
(ii) the modules, which express the functional relationships
between the system properties; (iii) the data, expressing the
actual state of the system and its possible futures in form of
scenarios; (iv) the use-cases, which specify the end-user re-
quirements. Those four categories are interrelated: new data
may create the need to change existing algorithms or develop
new ones with the consequent need to update the ontology.
Once the knowledge has entered the development cycle most
of the subsequent processes are automated. The development
process can be iterated as many times as needed. At any
stage a complete model is available. This approach allows
for rapid-prototyping of new models and their incremental
refinement until a satisfactory result is produced.

5.3 The model

The integrated model consists of a generic kernel, a number
of modules, and the feature classes. The modules and feature
classes are problem specific and developed as described in
the last section. All components, as well as the code gener-
ator, are completely implemented in Java and thus platform
independent. The Build tool described in the next section
includes some non Java components.

The kernel is responsible for data input, data output, and
the time-loop. It dynamically creates the data structures ac-
cording to the input data, sets the parameters, initialises the
state variables, and reads the drivers. The kernel loads the
modules at run-time and invokes them sequentially for each
time-step. The modules’ order of invocation is given in a
configuration file. In the case of DINAS-COAST all mod-
ules operate on the same time-scale. The model, however,
could be easily extended to support multiple time-scales.

Data input and output (I/O) is taken care of by two compo-
nents: the feature classes and generic adapters. The feature
classes handle the problem specific part of the I/O, that is
when to read (write) which properties from (to) which data
stream. This logic is specified by the ontology and then taken
up by the code generator to produce methods for initialising
the feature’s parameters, reading its drivers, and outputting
its state. For example, in Fig.1 the feature country has
two drivers: population and gdp. The code generator pro-
duces the methodreadDrivers(), which allows reading the
drivers from a given data stream. This way model input
and output is hard coded and efficient. While the genera-

Fig. 3. The DIVA Development Process. Boxes denote deliver-
ables, ovals denote processes, and shaded ovals denote automated
processes.

tion of the feature code as described in the last section could
be taken care of by any CASE (Computer-Aided Software
Engineering) Tools, the generation of the input and output
methods could not. The adapters handle the generic part of
the I/O. They take care of reading and writing different file
formats. Up to now, only one adapter for a self describing
binary data format developed by Delft Hydraulics exists (see
http://www.wldelft.nl/soft/tools/index.html). However, other
formats could be easily implemented.

5.4 The build tool

A tool for building, testing, and documenting the model ac-
companies the development process. It takes the Java mod-
ules and the XML ontology as inputs and generates a web-
site offering documents in various human- and computer-
readably formats (HTML, XML, CSV and PDF). The doc-
uments include meta-information about the modules, the
model, and the ontology, as well as documents used for the
generation of the graphical user interface and input data files.
Also included is a diagram that shows the data-flow through
the system of modules (Fig.2). The whole build and docu-
mentation process is fully automated: all documents are al-
ways consistent with the current model development status
and available on the web.

The DIVA Build Tool is based onAnt, which is a plat-
form independent build tool developed by the Apache Soft-
ware Foundation (seehttp://ant.apache.org). It is written in
Java, open-source, and easy to extended. The build processes
and dependencies are specified in an XML language. A cou-
ple of other standard open-source tools were used and inte-
grated viaAnt: The graph visualisation toolGraphviz(http:
//www.research.att.com/sw/tools/graphviz) is deployed to vi-
sualise the data-flow between the modules. The XML parser
Xercesand the XML processorXalan(http://xml.apache.org)
are used for XML parsing and processing.Latex, Latex2html
and the postscript utilitiesGhostvieware used for the gen-
eration of the PDF and HTML documents. The DIVA

http://www.demis.nl/home/pages/products.htm
http://www.demis.nl/home/pages/products.htm
http://www.wldelft.nl/soft/tools/index.html
http://ant.apache.org
http://www.research.att.com/sw/tools/graphviz
http://www.research.att.com/sw/tools/graphviz
http://xml.apache.org


50 J. Hinkel: DIVA: an iterative method for building modular integrated models

Build Tool is currently implemented on theGNU/Linuxplat-
form (http://www.gnu.org/gnu/the-gnu-project.html). How-
ever, since all the tools mentioned above are also available
for a variety of other platforms, it could easily be ported.

6 Limitations

The flexibility of the iterative model development process
comes at a price. The danger is that model development
doesn’t come to an end and not enough project time remains
for model validation and application. Another drawback of
this approach is that no complete specification of the mathe-
matical problem needs to be formulated. This is common to
all approaches which integrate models at the algorithmic or
computational level. Unintended model dynamics can result
from that and more efficient numerical solutions cannot be
found.

While the performance of Java has increased significantly,
there are still deficiencies compared to languages which are
compiled to native binary code. Performance could have
been increased by representing the data as arrays of simple
types rather then arrays of (feature) classes. However, the
primary goal was to make the interface for the module devel-
opers as intuitive as possible, rather than to optimise perfor-
mance. Since all data for one time-step is kept in memory,
the model’s performance decreases significantly, if the data
size exceeds the physical memory of the model’s host com-
puter.

7 Conclusions and outlook

The DIVA method is an innovative method for building mod-
ular integrated models by distributed partners. Unlike other
integrated modelling frameworks it emphasises communica-
tion and the organisation of the development process. It pro-
vides scientists from different backgrounds with a way to
harmonise their conceptualisations of the system to be mod-
elled and an intuitive interface to express their knowledge
about it. The process of model development is well defined
and automatically documented. As a result, the status quo
is constantly available on the web, providing a basis for effi-
cient communication between project partners.

Within the project DINAS-COAST the DIVA method
has been applied to build a tool for assessing the coastal
vulnerability to sea-level rise. Meanwhile, application and
improvement of both the DIVA tool and the DIVA method

can go hand in hand. The global scientific and policy
relevance of DIVA have already been recognised and collab-
oration on a range of initiatives is anticipated, including the
EU ICZM (Integrated Coastal Zone Management) Strategy,
and the new LOICZ (Land Ocean Interactions in the Coastal
Zone) Science Plan. Improvements on the current DIVA tool
could include a module for coral reefs and atolls, refining
the adaptation module and increasing the spatial resolution
of the analysis, thus increasing DIVA’s usefulness to coastal
management. In addition, it is conceivable to develop
regional versions of the DIVA tool, such as a DIVA-Europe
or a DIVA-India.

Edited by: P. Krause, S. Kralisch, and W. Flügel
Reviewed by: anonymous referees

References

Argent, R. M.: An overview of model integration for environmental
applications – components, frameworks and semantics, Environ-
mental Modelling & Software, 19, 3, 219–234, 2003.

Baarse, G.: Development of an operational tool for global vulnera-
bility assessment, CZM Centre Publication, No. 3, 1995.

Dolk, D. R.: An introduction to model integration and integrated
modeling environments, Decision Support Systems, 10, 3, 249–
254, 1993.

Hoozemans, F., Marchand, M., and Pennekamp, H.: Sea Level
Rise: A Global Vulnerability Assessment: Vulnerability Assess-
ments for Population, Coastal Wetlands and Rice Production on
a Global Scale, 2nd revised edition, Delft Hydraulics and Rijk-
swaterstaat, 1993.

Bruin, J. de, Vink, P. de, and van Wijk, J.: M – a visual simula-
tion tool, Simulation in the Medical Sciences, The Society for
Computer Simulation, San Diego, 181–186, 1996.

Leimbach, M. and Jaeger, C.: A modular approach to integrated as-
sessment modelling, Environmental Modeling and Assessment,
9, 4, 207–220(14), 2005.

Muetzelfeldt, R.: Declarative modelling in ecological and environ-
mental research, European Commission, Volume EUR 20918,
2004.

Rahman, J. M., Seaton, S. P., and Cudy, S. M.: Making frameworks
more usable: using introspection and metadata to develop model
processing tools, Environmental Modelling & Software, 19, 3,
275–284(10), 2003.

Vafeidis, A. T., Nicholls, R. J., and McFadden, L.: Developing a
database for global vulnerability analysis of coastal zones: The
dinas-coast project and the diva tool, Remote Sensing in Transi-
tion, 333–341, 2003.

http://www.gnu.org/gnu/the-gnu-project.html

