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Abstract. The accuracy of morphological predictions is gen-
erally measured by an overall point-wise metric, such as the
mean-squared difference between pairs of predicted and ob-
served bed levels. Unfortunately, point-wise accuracy met-
rics tend to favour featureless predictions over predictions
whose features are (slightly) misplaced. From the perspec-
tive of a coastal morphologist, this may lead to wrong de-
cisions as to which of two predictions is better. In order to
overcome this inherent limitation of point-wise metrics, we
propose a new diagnostic tool for 2-D morphological pre-
dictions, which explicitly takes (dis)agreement in spatial pat-
terns into account. Our approach is to formulate errors based
on a smooth displacement field between predictions and ob-
servations that minimizes the point-wise error. We illustrate
the advantages of this approach using a variety of morpho-
logical fields, generated with Delft3D, for an idealized case
of a tidal inlet developing from an initially very schematized
geometry. The quantification of model performance by the
new diagnostic tool is found to better reflect the qualitative
judgement of experts than traditional point-wise metrics do.

1 Introduction

Quantitative validation methods for morphodynamic models
are often grid-point based; they compare observations and
predictions per grid-point and compute various metrics for
the entire set or subset of grid-points (e.g.,Sutherland et al.,
2004). Unfortunately, point-wise accuracy metrics, such as
the commonly used MSE (Mean-Squared Error) and RMSE
(Root-Mean-Squared Error), tend to penalize, rather than re-
ward, the model’s capability to provide information on fea-
tures of interest, such as scour holes, accumulation zones and
migrating tidal channels. For instance, a prediction of a mor-
phological feature that is correct in terms of timing and size,

but is misplaced in space, may not outperform even a flat bed,
which is inconsistent with the common judgement of mor-
phologists (Fig.1). This “double penalty effect” (Bougeault,
2003), which applies in full when a feature is misplaced over
a distance equal or larger than its size, makes it difficult to
demonstrate the quality of a high variability prediction (An-
thes, 1983; Mass et al., 2002). Clearly, a high quality vali-
dation process requires alternative validation techniques that
account for the spatial structure of 2-D morphological fields.

For the verification of weather variables (e.g. precipi-
tation), methods are being actively developed to quantify
forecast performance based on spatial structure; see for in-
stanceCasati et al.(2008) andGilleland et al.(2009) for an
overview. One of the approaches in meteorology, now also
pioneered in other fields (e.g.,Haben et al., 2014; Ziegeler
et al., 2012), is to find an optimal deformation of the pre-
dictions that minimizes the misfit with observations. This
optimal deformation can be obtained by employing one of
many existing image matching methods, of which optical
flow techniques, designed to estimate motion, are probably
most well-known in the coastal community. The result of the
image matching or warping is a vector field of displacements,
which can be regarded as a displacement error field. In addi-
tion, an intensity or amplitude error field may be defined as
the difference between the deformed prediction and the ob-
servations (e.g.,Marzban and Sandgathe, 2010), which can
be seen as the point-wise error if no penalty applies for mis-
placements.

Existing verification methods, based on field deformation
of meteorological fields, not only differ in the applied im-
age matching method, but also in the approach to the subse-
quent extraction of map-mean errors.Keil and Craig(2009)
determine RMS (root-mean-squared) intensity and mean dis-
placement errors within the boundaries of precipitation fea-
tures, which they then combine into a single error metric.
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Fig. 1.The “double penalty effect”. Top panels: the featureless pre-
diction A has a non-zero differencedA between predicted and ob-
served depth values at the location of the observed feature only.
Lower panels: prediction B, which reproduces the feature at the
wrong location, is penalized twice (dB is non-zero both where the
predicted feature is and where it should be) and is thus diagnosed
with a twice as large (R)MSE as prediction A.

The latter requires the normalization of the two errors to put
each term on equal footing, which introduces two parame-
ters to the formulation. In contrast,Gilleland et al.(2010)
propose a combined error metric that besides the post-warp
RMS intensity error and the mean displacement error also
takes the original RMS intensity error into account, enabling
a more fair comparison of forecast performance. Their met-
ric, however, is not easily applicable since it requires three
user-chosen weights that are dependent on the error terms
themselves.

The goal of this paper is to quantify morphodynamic
model performance, while taking the spatial characteristics
of 2-D morphology into account. Using a field deformation
technique, we have developed and tested a new diagnostic
tool for the validation of 2-D morphological predictions. It
includes a location (displacement) error metric and a robust
and physically intuitive combined error metric that incorpo-
rates both location and intensity error. The combined metric
rewards predictions to the degree that a larger error reduction
can be obtained with smaller displacements. As a reference,
we use the subjective but very powerful method of visual in-
spection of morphological patterns by experts.

Our method is outlined in Sect.2, along with a brief de-
scription of the image warping method that we have adopted
to calculate the optimal deformation. Next, in Sect.3, we
put the new diagnostic tool to the test, using morphological
fields generated with Delft3D for an idealized case of a tidal
inlet developing from an initially very schematized geome-
try. Section4 concludes with a summary of our findings and
the implications for morphodynamic model validation.

2 Method

This section outlines our two-step approach to quantify the
(dis)agreement between 2-D morphological patterns. Sec-
tion 2.1 describes the first step of deforming (or warping)
the predicted morphology to minimize the point-wise error
with observations. Next, Sect.2.2 formulates two new error
metrics, a mean location error that is distilled from the dis-
placement vector fields and a single-number error metric that
measures both the correspondence with respect to location
and intensity (i.e. depth-values).

2.1 Warping method

The measure of closeness between images or spatial fields
is encountered in many fields from radiography to meteorol-
ogy. This has led to the development of a multitude of im-
age matching methods that, depending on the scientific field,
are also named registration or warping methods. The goal of
such methods is to find the optimal transformation that maps
each point of a static image to a corresponding point (with
the same intensity) in the moving image. Within the context
of morphodynamic model validation, the static image repre-
sents the observed depth fieldo and the moving image the
predicted depth fieldp.

Of all the available techniques, the class of optical flow
techniques, designed to estimate small displacements in tem-
poral image sequences, is probably the most well-known in
our field. The basic assumption of optical flow is that the in-
tensity of a moving object does not change appreciably in the
considered time interval. We employ the efficient, non-rigid
(i.e. allowing for free-form deformations) registration tech-
nique named Demon’s registration (Thirion, 1998), which
bears similarities to optical flow, in an implementation by
Kroon and Slump(2009). The Demon’s approach can be con-
sidered as similar to a minimization of the sum of square im-
age intensities between the deformed predictions and obser-
vations (Pennec et al., 1999). It is therefore consistent with
our quest to find the optimal deformation of the predictions
that minimizes the point-wise (R)MSE.

The estimated backward pixel displacementsB∗
=

(B∗
x ,B∗

y ) that are required for a given point in a static im-
age (the observations in our validation context) to match the
corresponding point in a moving image (the predictions) is
given byThirion (1998):

B∗
=

(Ip − Io)∇Io

|∇Io|
2
+ α2(Ip − Io)2

(1)

in which α is a normalization factor that is equal to 1 in
the original method andIo andIp are the intensities of the
static and moving image, respectively. The latter are taken
as the observed and predicted depth fields, normalized by
scaling between 0 and 1. Since Eq. (1) is based on local in-
formation, it is solved iteratively while including Gaussian
smoothing as a regularization criterion. This ensures that a
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realistic, smooth displacement field is found instead of an ir-
regular field that nonetheless minimizes the sum of squares.
The normalization factor is chosen asα = 2.5 in line with
Kroon and Slump(2009) and the standard deviation of the
Gaussian smoothing window asσ = 4. These parameters are
kept constant for all registrations presented in Sect.3. The
forward displacementsF ∗

= (F ∗
x ,F ∗

y ) from the moving to
the static image can be determined fromB∗ after the reg-
istration. Note that when in the following the subscript∗ is
dropped, we refer to the displacement fields transferred to a
physical distance.

For the purpose of model validation, we interpretd0 =

p0−o, with p0 the prediction prior to warp, as the total point-
wise error andd1 = p1 − o, with p1 the deformed prediction
as follows from the registration, as the point-wise error if no
penalty is imposed for location disagreement. Next, we use
this perspective in the formulation of map-mean errors.

2.2 Formulation of new error metrics

From the Demon’s registration (Sect.2.1), we obtain the opti-
mal displacement vector field between predictions and obser-
vations as well as the optimal deformation of the predictions.
“Optimal” in this context means that the sum of squares be-
tween the deformed predictions and observations is mini-
mized, such that 0≤ RMSE1 ≤ RMSE0, where RMSE0 and
RMSE1 are the root-mean-squared errors before and after the
warp, respectively. Note that we have preferred the RMSE
over the MSE, since the first is measured in the same units as
the data. Out of two predictions that have the same RMSE0,
a prediction that has similar morphological features as the
measurements, albeit displaced, may receive a lower RMSE1
than a prediction that is not able to reproduce the observed
morphological features at all. Thus, the RMSE1 is expected
to diagnose the agreement between morphological fields if a
zero penalty is imposed for misplacements of features. How-
ever, which of the two predictions is valued the better pre-
diction by morphologists not only depends on RMSE0 and
RMSE1, but also on the magnitude of the displacements re-
quired to obtain the error reduction. Therefore, we expect
that the similarity in both location and intensity between
morphological patterns can be fully assessed using three er-
ror metrics in concert: RMSE0, RMSE1 and a mean location
error D̄ that we will formulate next from the displacement
vector fields.

It is tempting to defineD̄ as the arithmetic mean ofD =
√

(Bx
2
+ By

2), the field of displacement magnitudes. How-
ever, it should be realised that the optical flow problem is
underconstrained; for a single grid-point, we only have in-
formation on the displacements normal to the contour lines,
whereas along the contour lines the displacements are am-
biguous (the so-called aperture problem). In the Demon’s
approach, the Gaussian smoothing acts as the necessary ad-
ditional constraint, requiring that nearby grid-points have
similar displacements. As a consequence, non-zero displace-

ments may be found along depth contours in morphologically
inactive regions (see Sect.3), whereas these displacements
do not improve the match between the deformed predic-
tion and the observations. Therefore, we propose a weighted
mean location error that weights the local backward displace-
ment magnitudesD with their effect on the reduction of the
local squared error. In this way, displacements are only taken
into account to the extent that they contribute to the mini-
mization of the sum of squares. This yields:

D̄ =

∑n
i=1wiDi∑n

i=1wi

; wi =
SE0,i − SE1,i∑n

i=1(SE0,i − SE1,i)
(2)

Here SE0 = (p0 − o)2 and SE1 = (p1 − o)2 are the local
squared errors before and after the warp, respectively,n is
the number of equidistant points in the spatial domain and∑n

i=1wi = 1. Note that RMSEj =

√
n−1

∑n
i=1SEj,i , with

j = [0,1].
Whereas model performance is usually diagnosed based

on RMSE0 only, we now have two additional metrics RMSE1
andD̄. In Sect.3, it is demonstrated that considering these
three metrics in concert allows a full assessment of model
quality, avoiding the double penalty effect for misplaced
features. In practice, guidance may be required on how to
weight these three metrics. Besides, the morphologist may
sometimes desire a single-number summary of model per-
formance, especially if automated calibration routines are
used. To serve these needs, we propose an adjusted RMS
error measure, RMSEw, that is computed from a field of
weighted squared errors SEw. The latter are determined by
locally weighting SE0 and SE1. The purpose of the weight-
ing procedure is to locally relax the requirement of an ex-
act match to an extent determined by the local displacement
magnitude. Figure2 illuminates the weighting procedure for
the ith gridpoint; an error reduction is awarded that is a frac-
tion 1−δi of the full error reduction potential (SE0,i −SE1,i).
Here,δi = Di/Dmax andDmax is a maximum displacement
length above which no relaxation is allowed. A larger frac-
tion 1− δi is allowed for smaller displacement magnitudes
Di , with a maximum of 1− δi = 1 and thus SEw,i = SE1,i

for Di = 0 m. ForDi ≥ Dmax, we have 1− δi = 0 and thus
SEw,i = SE0,i . Note thatDmax is a user-defined, physically
intuitive parameter that is dependent on the prediction situ-
ation and the goal of the simulation. It can be seen as the
maximum distance over which morphological features may
be displaced for the prediction to still get (some) credit for
predicting these features. We now have for RMSEw:

RMSEw =

√∑n
i=1SEw,i

n
(3)

where

SEw = SE1 + δ(SE0 − SE1) (4)

δi =
Di

Dmax
for Di ≤ Dmax; δi = 1 for Di > Dmax (5)
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Fig. 2. Weighted squared error for theith gridpoint SEw,i , which
is the sum of the local squared error after the warp SE1,i and
a penalty for misplacementsδ(SE0,i − SE1,i) with δ = Di/Dmax.
The penalty ranges from 0 forDi → 0 to (SE0,i − SE1,i) for Di =

Dmax, a user-defined maximum displacement length. ForDi ≥

Dmax the full point-wise error applies and SEw,i = SE0,i .

In conclusion, RMSEw as an error metric rewards fore-
casts to the degree that a larger error reduction can be ob-
tained by smaller displacements. By definition, RMSE1 ≤

RMSEw ≤ RMSE0. If the error reduction due to the image
deformation is negligible or can only be obtained with dis-
placements equal to or larger thanDmax, the diagnosed error
is equal to the original error prior to the deformation RMSE0.
If, on the other hand, the displacements required to minimize
the point-wise error are very small relative toDmax, we have
RMSEw ≈ RMSE1. The justification for this approach lies
in the tendency of coastal morphologists to credit a predic-
tion for the reproduction of features, albeit displaced, while
imposing a relatively small penalty for misplacement. The
intuitive weighting of these two aspects is mimicked by the
user-defined parameterDmax.

3 Application

Below, the new error metrics are used to diagnose the cor-
respondence between model-generated pairs of morphologi-
cal patterns for an idealized tidal inlet as well as the relative
ranking between the pairs. The fields have been generated for
the idealized case of a tidal inlet developing from an initially
very schematized geometry (Roelvink, 2006). First, Sect.3.1
demonstrates that the location errorD̄ is able to capture the
overall misplacement of the morphological patterns. Next, in
Sect.3.2, the combined error metric RMSEw is put to the
test. Two examples are shown where the RMSEw makes the
right the decision as to which of two predictions is the better
prediction while the conventional, purely point-wise RMSE0
fails to do so.
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Fig. 3. Example of the image warp:(a) the “observations”, calcu-
lated using Delft3D with Coriolis at 53◦ N; (b) the predictions, cal-
culated at 0◦; (c) the backward displacement vector fieldB of the
observations towards the predictions, shown on top of the observa-
tions; and(d) the predictions deformed to more closely match the
observations.
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Fig. 4.Point-wise error fields for the predicted depth field at 0◦: (a)
the total errord0 = p0−o before the warp;(b) the errord1 = p1−o

after the warp, to be regarded as the remaining point-wise error if
no penalty applies for location disagreement.

3.1 Location error

In this subsection, we consider a subset of the model-
generated depth fields which only differ with respect to the
latitude, and hence Coriolis parameter, used in the model. Of
four depth fields, we label the field generated at 53◦ N as the
“observations” (Fig.3a) and consider the other fields, for lat-
itudes 90◦ N, 0◦ and 90◦ S, as three competing predictions.
Even though the predictions are not shown here, it will not
come as a surprise that the point-wise error RMSE0 is small-
est for 90◦ N and largest for 90◦ S (Table1).

In order to determine RMSE1 and D̄, the image warp-
ing method is applied, following the procedure outlined in
Sect.2, and illustrated here for the prediction at 0◦ (Fig. 3b).
The deformed prediction that matches the observations most
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Table 1.Errors for competing predictions that differ with respect to
the latitude, and thus the Coriolis parameter, used in Delft3D. The
model results for 53◦ N are regarded as the “observations”.

Latitude RMSE0 (m) RMSE1 (m) D̄ (m)

90◦ N 0.29 0.12 180
0◦ 0.52 0.26 350
90◦ S 0.73 0.35 710
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Fig. 5. Weighted displacementswD for the prediction at 0◦. Here
D =

√
(Bx

2
+ By

2) is the field of displacement magnitudes com-
puted from the backward displacement vector fieldB (see Eq.1),
andw is determined according to Eq. (2).

closely is shown in Fig.3d and the corresponding back-
ward vector displacement fieldB in Fig. 3c. As explained
in Sect.2.1, in the inactive outer regions, physically unre-
alistic displacements are found along depth contours, since
no penalty is imposed in the minimization for displacements
along depth contours. As will be illustrated next, this is
solved for in the formulation of̄D (Eq.2).

The differenced0 between the predictions prior to the warp
and the observations is shown in Fig.4a, whereas Fig.4b
shows the differenced1 after the warp. Note that taking the
root-mean-square ofd0 andd1 yields RMSE0 and RMSE1,
respectively. Fromd0, the double penalty problem is clearly
observed; for instance at the edges of the ebb-tidal delta, an
error is diagnosed both where the delta is present in the obser-
vations but absent from the predictions and vice versa. After
the warp, both errors have practically disappeared, such that
they will not count towards RMSE1, demonstrating again
that RMSE1 should be regarded as the point-wise error if
no penalty for misplacement is taken into account. For the
prediction at 0◦, RMSE1/RMSE0 = 0.5, and slightly smaller
ratios are found for the other two predictions (Table1).

The weighted dispacementswD, with D =
√

(Bx
2
+By

2)

and w according to Eq. (2), are shown in Fig.5. Inherent
to the use of the squared error to determinew is that larger
error reductions are heavily weighted. Here, we have never-

Table 2. Subjective ranking (with 1 being the best prediction) and
errors for competing predictions, generated with Delft3D for vari-
ous boundary conditions. The “observations” are taken as the model
outcome at 0◦ (cf. Sect.3.1). The values for RMSEw hold for
Dmax= 3000 m.

Predic- Rank- RMSE0 RMSE1 D̄ RMSEw
tion ing (m) (m) (m) (m)

A 1 0.78 0.38 610 0.49
B 2 0.77 0.53 770 0.60
C 3 1.16 0.56 860 0.78
D 4 0.96 0.77 1230 0.84

theless chosen this weighting since squared errors are consis-
tent with the minimization as performed by the registration
method as well as with the use of the (R)MSE as the point-
wise metric, which is common in morphodynamic model val-
idation. Note that for the computation of̄D (Eq. 2), we re-
quire the backward (from the observations to the predictions)
rather than the forward displacements; for each point in the
observational domain, these provide the distance at which the
point in the predictions is located that is shifted to the consid-
ered location in the observations. SummingwD for the entire
domain yields a location error̄D = 350 m at 0◦ (Table1).

The values forD̄ for the three predictions demonstrate a
qualitative behaviour consistent with the error in latitude and
hence Coriolis effect in the various predictions (Table1). In
fact, all three error metrics, RMSE0, RMSE1 and D̄ diag-
nose the predictions for 90◦ N and 90◦ S as the best and worst
predictions, respectively. Next, we will consider situations in
which a ranking consistent with expert judgement is only ob-
tained by considering these three metrics in concert, using an
appropriate weighting, or from RMSEw.

3.2 Ranking according to the combined error metric

In this subsection, we present an example, again using depth
fields generated with the Delft3D model of the schematized
tidal inlet, that demonstrates that RMSEw outperforms the
traditional score RMSE0. Now, the model results at a lati-
tude of 0◦ (see Sect.3.1) are assumed to be the “truth”. Four
competing predictions are considered that are generated at 0◦

with various changes to the model boundary conditions (w.r.t.
tidal amplitude and flow direction). Figure6 shows the four
predictions, the “observations” and the deformed predictions
that minimize the point-wise error.

We have labelled the predictions according to a subjec-
tive ranking based on visual inspection, with A the prediction
with the closest match with the observations and D, the worst
prediction. We have a slight preference for prediction B over
C, but it is possible that other morphologists would tend to re-
gard C as the better prediction. Not surprisingly, the relative
ranking as diagnosed by RMSE0 deviates from the expert
ranking (Table2); based on RMSE0 one would wrongfully

www.adv-geosci.net/39/37/2014/ Adv. Geosci., 39, 37–43, 2014



42 J. Bosboom and A. J. H. M. Reniers: Error metrics for morphodynamic models

A B C D "Observed"

A warped B warped C warped D warped "Observed"

Fig. 6. Predictions A, B, C and D, the “observations” (taken as the model results for 0◦) and the corresponding deformed predictions that
minimize the point-wise mismatch between predictions and observations. The labels are chosen such that the lower the label in the alphabet,
the higher the quality that the prediction is probably diagnosed with upon visual inspection. The axes are as in Fig.3.
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RMSE1.

conclude that predictions A and B perform equally well and
that prediction D outperforms prediction C.

The values of RMSE1, D̄ and RMSEw for the respective
predictions provide the necessary additional information on
model performance (Table2). The smaller RMSE1 for pre-
diction A than for prediction B shows that if no penalty is
imposed for misplacements, prediction A receives a lower
error than B. Moreover, a smaller average displacementD̄ is
required to minimize the point-wise error. Thus, even though
no distinction can be made based on RMSE0, we can con-
clude that pattern A more closely corresponds to the ob-
servations than pattern B. Clearly, considering the values of
RMSE0, RMSE1 and D̄ in concert leads to a diagnosis of

relative model performance of A and B in line with visual
inspection.

To determine RMSEw, a value forDmax must be chosen. A
defendable choice would be to limitDmax to the scale of the
morphological features of interest. For this particular case,
Dmax = 3000 m is considered appropriate, being in the order
of magnitude of the seaward extent of the ebb-tidal delta. In
general, of course,Dmax must be chosen in accordance with
the goal of the simulation.

Figure7 shows that withDmax = 3000 m, RMSEw reports
a higher quality for prediction A than for prediction B, re-
gardless of the exact choice forDmax. Only if one decides to
not allow any relaxation of the requirement of an exact match
(Dmax = 0 m), RMSEw is identical to the full point-wise er-
ror RMSE0 and no distinction can be made between A and
B. If one wishes to allow the full error reduction potential
(Dmax → ∞), we have RMSEw = RMSE1.

Table2 illuminates that prediction C, the prediction with
the largest RMSE0, has a much larger potential for error re-
duction by warping than prediction D; notwithstanding the
larger RMSE0, RMSE1 is smaller for prediction C than for
D and at a smaller mean displacementD̄. The relatively
small error reduction potential for D is a result of the fact
that features not present in the predictions remain absent af-
ter the warping procedure, as evident in the deformed pre-
dictions in Fig.6. As a result, RMSE1 remains relatively
high for D, rightfully penalizing the prediction for the ab-
sence of the observed features. A conclusive answer as to
whether C or D is the better prediction now requires a (sub-
jective) weighting of RMSE0, RMSE1 andD̄. Conveniently,
the weighting between location errors, pre-warp and post-
warp intensity errors is already provided by the formula-
tion of RMSEw, allowing a quantitative single-number com-
parison between predictions C and D. ForDmax = 3000 m,
the values for RMSEw indicate that prediction C outper-
forms D (Fig.7), consistent with the ranking based on visual
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inspection. Naturally, the occurence of this ranking reversal,
as compared to the ranking based on RMSE0, depends on the
chosen value ofDmax.

4 Conclusions

We have developed a new diagnostic tool for morpho-
dynamic model validation. It employs an image warping
method that finds the smooth displacement field between pre-
dictions and observations that minimizes the point-wise er-
ror. Two new metrics are proposed: (1) a location errorD̄ that
is determined as a weighted mean distance between morpho-
logical fields; and (2) a combined error metric RMSEw that
takes both location and intensity errors into account.

A full appreciation of the quality of a prediction can be
obtained when considerinḡD in concert with both the orig-
inal point-wise error RMSE0 and the point-wise error of the
deformed predictions, RMSE1. In order to quantify the rela-
tive performance between predictions, a (subjective) weight-
ing of these three metrics must be carried out. Alternatively,
the weighting is already provided by RMSEw that combines
all relevant information on location errors and pre- and post-
warp intensity errors.

The combined error metric credits predictions to the de-
gree that a larger error reduction can be obtained with smaller
displacements. It reduces to RMSE0 if all displacements are
larger than a user-definedDmax and to RMSE1 for displace-
ments that are negligible relative toDmax. The latter can
be seen as the maximum distance over which morphologi-
cal features may be displaced for the prediction to still get
(some) credit for predicting these features. The appropriate
choice forDmax depends on the prediction situation and the
goal of the simulation. Since it only requires a single, physi-
cally intuitive parameter, RMSEw provides a robust basis for
comparison.

An example of a schematized tidal inlet has demonstrated
that RMSEw outperforms the conventional validation ap-
proach based on a strictly point-wise metric such as RMSE0.
In situations where morphological features are misplaced,
point-wise accuracy metrics tend to favour predictions that
underestimate variability. For the schematized tidal inlet, it
was shown that, as opposed to RMSE0, the new combined
error metric RMSEw makes choices as to which of two pre-
dictions is better, which are consistent with visual validation
by experts.
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