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Abstract. For the analysis of climate impact on flood flows
and flood frequency in macroscale river basins, hydrologi-
cal models can be forced by several sets of hourly long-term
climate time series. Considering the large number of model
units, the small time step and the required recalibrations for
different model forcing an efficient calibration strategy and
optimisation algorithm are essential.

This study investigates the impact of different cal-
ibration strategies and different optimisation algorithms
on the performance and robustness of a semi-distributed
model. The different calibration strategies were (a) Lumped,
(b) 1-Factor, (c) Distributed and (d) Regionalisation. The lat-
ter uses catchment characteristics and estimates parameter
values via transfer functions. These methods were applied
in combination with three different optimisation algorithms:
PEST, DDS, and SCE. In addition to the standard temporal
evaluation of the calibration strategies, a spatial evaluation
was applied. This was done by transferring the parameters
from calibrated catchments to uncalibrated ones and vali-
dating the model performance of these uncalibrated catch-
ments. The study was carried out for five sub-catchments of
the Aller-Leine River Basin in Northern Germany.

The best result for temporal evaluation was achieved by
using the combination of the DDS optimisation with the Dis-
tributed strategy. The Regionalisation method obtained the
weakest performance for temporal evaluation. However, for
spatial evaluation the Regionalisation indicated more robust
models, closely followed by the Lumped method. The 1-
Factor and the Distributed strategy showed clear disadvan-
tages regarding spatial parameter transferability. For the pa-
rameter estimation based on catchment descriptors as re-
quired for ungauged basins, the Regionalisation strategy
seems to be a promising tool particularly in climate impact
analysis and for hydrological modelling in general.

1 Introduction

The use of hydrological models for answering questions in
water resources management is nowadays the technical stan-
dard, not only in sciences. In many cases the modeller has to
handle catchments on large scales ranging from 100 km2 to
more than 10 000 km2. On this scales it is not possible to de-
scribe the hydrological cycle of this subsystem (catchment)
in physical detail (Chow et al., 1988). There is a number of
different process oriented models (some are called physically
based), whose parameters are closely related to the physical
properties of the catchment. These parameters are inherently
uncertain. Moreover, the availability of the required data to
estimate the parameters is often a problem considering the
scales hydrologists are working on. For example it is hardly
possible to get a sufficiently detailed description of the soils.
In practice this means that at least some of the parameters
have to be estimated via calibration (Beven, 2001) what is
done automatically in this study. Taking all parameters of
a distributed- or semi-distributed-model into account the di-
mension9 of the parameter search space can be described
as:

9 = Ns · Np, (1)

whereNs gives the number of catchment units (normally sub-
basins or grid cells) andNp stands for the number of pa-
rameter per unit (Pokhrel and Gupta, 2010; Samaniego et al.,
2010). The high dimensional parameter search space leads
to the problem of equifinality which means, that there are
many different parameter sets which will result in compara-
ble solutions with respect to the model performance (Beven,
2001). Generally the dimension of the search space for the
calibration should be reduced, for example by eliminating
Ns in Eq. (1), in order to make the parameter estimation
more robust. Pokhrel and Gupta (2010) achieved good results
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by reducing the dimension of the calibration problem. Other
studies are dealing with the Regionalisation of model param-
eters, which may lead as well to a more robust model per-
formance. One common approach of Regionalisation is to
relate parameters of the model to catchment characteristics.
Usually, the hydrological model is calibrated for some se-
lected catchments independently and then the parameters are
related to catchment descriptors via (multiple-) regression
analysis (Haberlandt et al., 2001; Merz and Bloeschl, 2004).
This procedure does not consider the parameter equifinal-
ity problem. Another idea is to calibrate parameters for dif-
ferent catchments simultaneously via optimisation of trans-
fer functions which relate the parameters to the catchment
characteristics. By reducing the risk of equifinality this ap-
proach showed good results in some studies (Hundecha and
Bárdossy, 2004; Samaniego et al., 2010). Besides the calibra-
tion strategy the selected optimisation method plays an im-
portant role in the calibration process of hydrological mod-
els. Local search algorithms are fast but are prone to trap
into local minima (Abbaspour et al., 2001). One often ap-
plied local optimisation tool is PEST (Kim et al., 2007). So-
phisticated global search algorithms will more likely find a
global optimum (Blasone et al., 2007). Typical candidates
are the Shuffled-Complex-Evolution (SCE) method (Duan et
al., 1993a) and the Dynamically Dimensioned Search (DDS)
algorithm (Tolson and Shoemaker, 2007).

This research is part of a climate impact study. The focus
is on long-term continuous hydrological modelling with the
well known conceptual model HEC-HMS (Feldman, 2000)
at an hourly time step for subsequent flood frequency anal-
yses. For a number of catchments within a macroscale re-
gion, several sets of climate data will be used as forcing.
Considering the large spatial scale, the small time step and
the required recalibrations for different model forcing an ef-
ficient calibration strategy and optimisation algorithm are es-
sential. Using a subset of catchments and data the main ob-
jective of this study is to find such a strategy together with
a suitable optimisation algorithm. In such a framework not
only the model performance for single catchments is of in-
terest, but especially the estimation of robust models. Here,
the model was considered as robust if its parameters can be
transferred to ungauged catchments using a relation between
catchment descriptors and model parameters without a sig-
nificant decrease in model performance. Four different cali-
bration strategies were combined with three different optimi-
sation algorithms. First, a temporal evaluation of all model
performances was done via a split sampling of the time se-
ries. In a further step a spatial evaluation was carried out,
regionalising and applying the calibrated parameters for un-
calibrated catchments.

Fig. 1. Structure of the HEC-HMS Model (Bennett and Peters,
2000).

2 Methods

2.1 Hydrological model

The hydrological model used in this investigation was the
Hydrological-Modelling-System Version 3.3 from the Hy-
drologic Engineering Center (HEC-HMS) of the US Army
Corps of Engineers (Feldman, 2000). HEC-HMS is a semi-
distributed model with horizontal structure realized via sub-
basins. Figure 1 shows the structure of HEC-HMS (Bennett
and Peters, 2000). For runoff generation a Soil Moisture Ac-
counting scheme is used. The runoff concentration of the sur-
face runoff is calculated with Clark’s Unit Hydrograph, the
interflow and baseflow are calculated with linear reservoirs.
All flows in the channel are routed with the Muskingum
method. The calculation of the potential evapotranspiration is
carried out with the Priestley-Taylor method, the snow melt
with the Temperature-Index method. All meteorological in-
put data were interpolated using Ordinary-Kriging for pre-
cipitation, External-Drift-Kriging (elevation as secondary in-
formation) for temperature and Inverse-Distance for net radi-
ation. The model was run in a continuous mode on an hourly
time step.

2.2 Optimisation algorithm

Optimisation algorithms can be generally distinguished be-
tween local search algorithms and global search algorithms.
In this study both types were used, where PEST (Doherty,
1994) is a local optimisation and SCE (Duan et al., 1994)
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Fig. 2.Typical parameter set up for a semi-distributed model. Every
8i,j stands for one parameter value (i = parameter,j = subbasin).

and DDS (Tolson and Shoemaker, 2007) are global optimisa-
tion algorithms. PEST uses the Gauss-Marquardt-Levenberg
method for nonlinear parameter estimation. One condition
for the application of PEST is that the adjustable parame-
ters must be continuously differentiable (Doherty, 1994). The
SCE algorithm builds on four well proved concepts: first the
combination of random and deterministic, second the con-
cept of clustering, third the concept of systematic evolution
and fourth the concept of competitive evolution. The SCE al-
gorithm was created to solve a broad class of problems such
as finding solutions for a multi parameter space which is not
even continuous (Duan et al., 1993b). The DDS is a stochas-
tic based global search algorithm. For each iteration a set of
parameters is selected which are then perturbed by values
randomly sampled from a normal distribution. The number
of dimensions decreases with an increasing number of itera-
tions, so that the solver searches more globally at the begin-
ning and more locally at the end of the optimisation proce-
dure (Tolson and Shoemaker, 2007).

2.3 Calibration strategies and validation

There are many different approaches for automatic calibra-
tion of watershed models. The simplest one is the use of
the same parameter value for all subbasins. This strategy is
named Lumped (LUM) parameter estimation here. In Fig. 2
a sketch of a semi-distributed model is shown. For each sub-
basin the parameters8i,j need to be estimated, where the
index i stands for the parameter and the indexj for the sub-
basin. For the Lumped method all particular parameter values
are equal:

8i,1 = 8i,2 = 8i,3 = 8i,4 ; i = 1, . . . ,Np. (2)

This implicates that the dimension of the search space de-
pends only on the number of different parametersNp. By
eliminating the number of subbasinsNs in Eq. (1) the di-
mension9 becomes:

9 = Np. (3)

Employing the Lumped method as we do here, the spatial
variability of the climate forcing is still represented due to

the attribution of time series to the subbasins, but the spa-
tial variability of the parameters is lost. To avoid this, the
1-Factor (1-F) method is introduced. Initial parameter values
are defined in a pre-processing step based on basin character-
istics such as soil, landuse and topography. As a result spa-
tially variable initial values for the parameters are obtained:

8i,1 6= 8i,2 6= 8i,3 6= 8i,4 ; i = 1, . . . ,Np. (4)

Due to the conceptuality of the hydrological model used in
this study the prior parameter estimation does not provide
reliable values but is more an indicator of the spatial vari-
ability of the parameters. In the next step one factor is cre-
ated for each parameter. These factors are calibrated and then
multiplied with the particular parameter values (Pokhrel and
Gupta, 2010). The dimension of the search space is indepen-
dent of the number of subbasins, like for the Lumped strat-
egy, and Eq. (3) is valid. Both strategies are limiting the vari-
ability of the parameter values. Either there is no spatial vari-
ability (LUM) or the variability is given by pre-processing
which depends on the modeller’s subjective assessment of
the catchment.

Hence a further Distributed calibration strategy (DIS) is
applied which considers all parameters for all subcatchments
independently. Since each single parameter value is cali-
brated, the dimension of the parameter search space is the
product of the number of subbasinsNs and the number of
parametersNp (Eq. 1) and is generally much larger than for
the other methods.

As last calibration strategy the Regionalisation method
(REG) is introduced, assuming that the parameters of the hy-
drological model can be related to basin characteristics. Each
parameter value is calculated via transfer functions which
have to be pre-defined and should include the main catch-
ment characteristics affecting the particular parameter. The
following structure of such a function is used here:

8i,j =

k∑
n=1

αi,n · Sj,n+

u∑
m=1

βi,m · Lj,m + γi · Areaj + ...

i = 1, . . . ,Np; j = 1, . . . ,Ns, (5)

whereSj,n andLj,m are relative areas of soil- and landuse
classes, respectively andk andu are the number of different
soil/- landuse classes defined for each subbasin. It is impor-
tant to note, that not the parameters themselves are calibrated
but the coefficients of the transfer function (αi,n, βi,m, γi ,
. . . ). Further details of this strategy can be found in Hundecha
and B́ardossy (2004). The soil classesSj,n were described
via fuzzy numbers (Fig. 3). In a first step the main physical
descriptor has to be estimated for each parameter (e.g. pa-
rameter: maximum infiltration→ descriptor: hydraulic con-
ductivity). The estimation of the specific values for these
physical descriptors for each soil is based on (Finnern et al.,
1994). With these values the fuzzy numbers were set up. For
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Fig. 3. Example for the definition of the fuzzy numbers for one
physical basin descriptor (fuzzy number 1 dashed line; fuzzy num-
ber 2 dotted dashed line; fuzzy number 3 dotted line).

each single soil a membership to the fuzzy numbers can be
defined. The upscaling of this information to the subbasin
was simply done by averaging. The Regionalisation method
allows calibrating an arbitrary number of catchments simul-
taneously with constant dimension of the parameter search
space. It uses physical basin characteristics and hydrologi-
cal information from different sites. In addition, this proce-
dure alleviates the equifinality problem in model parameter
regionalisation.

Beside the standard evaluation of the calibration strategies
via a temporal split sampling, a spatial split sampling was
introduced (only for the DDS calibration). This was done
by transferring the parameters from calibrated donor catch-
ments to uncalibrated ones and validating the model perfor-
mance for these uncalibrated catchments. For the Lumped, 1-
Factor and the Distributed method, multiple regressions with
the structure of the transfer functions (Eq. 5) were fitted on
the calibrated catchments. Then for the uncalibrated catch-
ments the parameters were estimated using these regressions
and the catchment characteristics (cf. Eq. 5).

To evaluate the model performance three different objec-
tive functions were used. The squared error (SqE):

SqE=

N∑
t=1

(QObs(t) − QSim(t))2
→ Min, (6)

the Nash-Sutcliffe efficiency coefficient (NSE) (Nash and
Sutcliffe, 1970):

NSE= 1−

N∑
t=1

(QObs (t) − QSim (t))2

N∑
t=1

(
QObs (t) − QObs

)2
→ Max, (7)

Fig. 4.Aller-Leine River Basin with catchments used for hydrologi-
cal simulations. The indicated numbers correspond to the catchment
ID’s in Table 1.

and the volume-error (VoE):

VoE =

N∑
t=1

QObs (t) −

N∑
t=1

QSim (t)

N∑
t=1

QObs (t)

→ Min, (8)

whereQObs(t) andQSim(t) are observed and simulated dis-
charge for each time step, respectively,QObs is the mean ob-
served discharge andN is the number of time steps. To com-
bine the NSE and the VoE a multi criteria objective function
(ObjFunc) was implemented:

ObjFunc=
√

(1 · (1− NSE))2
+ (1.4 · (0− VoE))2

→ Min,

(9)

giving more weight on the volume error.

3 Study area and data

The Aller-Leine river basin covers most of the south-eastern
part of Lower Saxony in Germany (Fig. 4). For this investi-
gation five subcatchments with a size between 300 km2 and
1000 km2 and with subbasin sizes from 20 km2 to 40 km2
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Table 1.Characteristics of the catchments (mean values for precipitation, temperature and runoff).

ID Catchment/Gauge Area [km2] Elevation [m] Pcp. [mm/yr] Temp. [◦C] Runoff [m3 s−1] No. Subbasins

1 Nette/Derneburg 309 206 872 9.29 2.8 10
2 Leine/Reckershausen 319 340 771 8.61 2.3 10
3 Wietze/Wieckenberg 411 50 722 10.20 2.0 11
4 Leine/Leineturm 990 272 752 8.95 7.8 36
5 Schunter/Glentorf 290 137 727 9.56 1.5 10

were chosen. Some of the basin characteristics are given in
Table 1. The climate data for the Aller-Leine catchment (pro-
vided by the German Weather Service DWD and Meteome-
dia) include 100 precipitation stations with a high temporal
resolution (≤1 h), 244 precipitation stations with a daily res-
olution, 38 temperature stations with a high temporal resolu-
tion (≤1 h) and 20 other stations for which net radiation was
calculated on a daily time step. However, from the large num-
ber of recording precipitation stations only 11 stations had an
observation period of more than 10 years. The soil map (BüK
1000) with a scale of 1:1 000 000 was provided by the Fed-
eral Institute for Geosciences and Natural Resources (BGR),
as land cover map CORINE 2000 was used and a digital el-
evation model (DEM) with a resolution of 10× 10 m was
provided by the Lower Saxony Water Management, Coastal
Defence and Nature Conservation Agency (NLWKN). Dis-
charge time series were obtained for streamflow gauges at
the outlets of the five catchments in high temporal resolu-
tion (≤1 h). Three of the catchments with gauges: Derneb-
urg, Reckershausen and Wieckenberg, were used for tempo-
ral split sampling and all five, including the other two with
gauges: Leineturm, Glentorf, for spatial split sampling. The
whole study was based on continuous rainfall runoff sim-
ulations with an hourly resolution. The calibration period
was three years (2004/2007/2008), the validation period two
years (2005/2006). The first year (2003) was used as spin-up
period to determine the initial conditions for the model.

4 Analysis and results

4.1 Evaluation by temporal split sampling

In addition to the evaluation of the model performance, the
efficiency of the different combinations of calibration strate-
gies and optimisation algorithms were investigated. This was
done by limiting the number of iterations to 1000 for each
catchment and comparing the model performance after ap-
plying the different optimisation algorithms. In a first step
the squared error (Eq. 6) was used as objective function for
the calibration. For the Regionalisation method the standard-
ised objective function (Eq. 9) was implemented. In Fig. 5
the Nash-Sutcliffe efficiency and the volume error (VoE) are
illustrated for three catchments, calibrated with the Lumped
calibration strategy in combination with the PEST optimi-

Fig. 5. Model performance for the Lumped calibration strategy in
combination with the PEST optimisation algorithm. The ideal point
with an NSE = 1 and a VoE = 0 is shown in the top right corner.
(Der. = Derneburg; Rec. =Reckershausen; Wie.= Wieckenberg; C.
= calibration (years 2004, 2007–2008); V. = validation (years 2005–
2006)).

sation algorithm. Comparing calibration and validation per-
formances, for all catchments a small decrease of the NSE
can be recognised. But the VoE for Derneburg stays nearly
the same, and for Reckershausen it even increases. To eval-
uate these results for all combinations of calibration meth-
ods the average of the objective function (Eq. 9) for all
three catchments, Derneburg, Reckershausen and Wiecken-
berg, was calculated and subtracted from 1.00. The closer the
results are to 1.00, the better is the model performance. Fig-
ure 6 illustrates the results for all combinations. In all cases
the performance of the validation period decreased compared
to the calibration period. The Lumped method as well as
the 1-Factor method showed good results for all three op-
timisation algorithms in the calibration period. Considering
that both methods handle the same dimension of the param-
eter search space (42 dimensions for all three catchments)
the slightly better performance of the 1-Factor method might
be due to a good estimation of the spatial variability of the
initial parameter set. For the Lumped and 1-Factor method
there were no significant differences in performance between
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Fig. 6. Mean model performance calculated as 1.00 minus the av-
erage over the objective function values (Eq. 9) for the three catch-
ments, Derneburg, Reckershausen and Wieckenberg for all combi-
nations of calibration strategies and optimisation algorithms. The
optimum result would be 1.00.

the different optimisation algorithms. However, considering
the Distributed and Regionalisation methods it seemed that
the PEST algorithm is not able to solve these more complex
problems. In this study it was not possible to obtain accept-
able results using PEST with those methods. In both cases
the DDS algorithm outperformed the SCE algorithm for cal-
ibration and validation. An indicator of the robustness of the
model is the difference in performance between calibration
and validation, where the 1-Factor strategy showed the best
results. The overall best performance was obtained using the
Distributed strategy, calibrated with the DDS algorithm. So
far the Regionalisation method led to the least performance
of all calibration strategies. This may be attributed to the fol-
lowing reasons: the development of the transfer function used
for the Regionalisation is just in its first phase and different
catchments were calibrated simultaneously which sets more
restrictions on the parameter estimation. The parameter di-
mensions of the Regionalisation strategy were 33 whereas
the Lumped and the 1-Factor method had 42 dimensions and
the Distributed method even had 416 dimensions (as sum
over all calibrated catchments). All results are listed in Ta-
ble 2.

4.2 Evaluation by spatial split sampling

Beside the common temporal evaluation of model perfor-
mance criteria a special focus was given to the spatial trans-
ferability of parameter values, described in Sect. 2.3. There-
fore the parameters of the three donor catchments, calibrated
with the DDS algorithm, were transferred to the two vali-
dation catchments. Due to some changes in the transfer func-
tions the results of the Regionalisation method in this chapter
are not directly comparable with those from Sect. 4.1. The
upper diagram of Fig. 7 illustrates the model performance,
averaged for the three calibration respectively the two valida-
tion catchments, in the calibration period. Although the Re-
gionalisation method showed the poorest performance for the
calibration catchments, this method outperformed the other
ones considering the validation catchments. Surprisingly, the
Lumped strategy showed good results as well. Similar re-
sults were obtained for the validation period (lower diagram
in Fig. 7). The Lumped as well as the Regionalisation method
showed a better model performance for the validation catch-
ments than the other two strategies. As mentioned before the
transferability of parameters is a clear indicator of model ro-
bustness. Comparing the 1-Factor and the Lumped method
the results differed considerably from each other. This might
be explained by the transfer of a locally estimated spatial dis-
tribution of the parameter set for the 1-Factor method, which
is not necessarily representative for other catchments.

In the spatial evaluation, the performance of the Dis-
tributed method noticeably decreased compared to the tem-
poral evaluation to. This can be explained by the high dimen-
sional parameter search space, which allowed a most flexible
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Table 2.Nash-Sutcliff efficiency and volume error for the calibration and validation of the different catchments and the different optimisation
algorithms (gauges: Der. = Derneburg; Rec. = Reckershausen; Wie. = Wieckenberg). The calibration years are 2004, 2007 and 2008. The
validation was done for 2005 and 2006.

Lumped 1-Factor Distributed Regionalisation

Calib. Valid. Calib. Valid. Calib. Valid. Calib. Valid.

Gauge NSE VoE NSE VoE NSE VoE NSE VoE NSE VoE NSE VoE NSE VoE NSE VoE

PEST
Der. 0.83 0.02 0.63 0.02 0.82 0.09 0.70 0.02 0.75 0.19 0.56 0.17 0.49 0.38−0.22 0.17
Rec. 0.70 0.07 0.65 0.03 0.78 0.01 0.71 0.00−2.71 0.17 −1.65 0.06 0.50 0.14 0.51 0.09
Wie. 0.84 0.06 0.66 0.10 0.90 0.03 0.84 0.09−0.11 0.00 −0.41 0.07 0.52 0.05 0.45 0.01

DDS
Der. 0.77 0.06 0.31 0.05 0.81 0.01 0.71 0.01 0.86 0.05 0.69 0.05 0.69 0.10 0.37 0.18
Rec. 0.69 0.02 0.61 0.02 0.79 0.02 0.69 0.00 0.86 0.03 0.67 0.02 0.71 0.01 0.62 0.02
Wie. 0.84 0.07 0.69 0.09 0.91 0.01 0.82 0.15 0.94 0.01 0.82 0.07 0.83 0.00 0.65 0.07

SCE
Der. 0.76 0.08 0.68 0.14 0.75 0.12 0.64 0.10 0.70 0.24 0.41 0.22 0.70 0.12 0.57 0.21
Rec. 0.67 0.02 0.60 0.02 0.75 0.01 0.67 0.03 0.64 0.07 0.57 0.08 0.65 0.01 0.53 0.02
Wie. 0.77 0.04 0.59 0.13 0.91 0.00 0.83 0.13 0.80 0.04 0.53 0.17 0.72 0.04 0.50 0.06

Fig. 7. Mean model performance calculated as 1.00 minus the av-
erage over the objective function values (Eq. 9) of the respective
catchments for the spatial evaluation in the calibration period (left
figure) and in the validation period (right figure). The white bars
show the mean performance for the three calibrated catchments
(gauges: Derneburg, Reckershausen, Wieckenberg) and the grey
bars represent the mean performance for the two validation catch-
ments (gauges: Leineturm, Glentorf).

fitting of the parameters to the hydrograph of the calibration
catchment, but is prone to the problem of equifinality.

5 Conclusions

This study focused on the comparison of different calibration
strategies in combination with different optimisation algo-
rithms. It was shown, that depending on the complexity of the
optimisation problem, the performance of different optimisa-
tion algorithms can vary significantly. The local search algo-
rithm PEST found good solutions for the simple calibration
strategies, Lumped and 1-Factor. With increasing complex-
ity, the performance of PEST significantly decreased. The
DDS algorithm slightly outperformed the SCE algorithm.
The restriction of 1000 iterations per catchment certainly
plays an important role for this result. Both global optimisa-
tion algorithms showed that, even with this tough restriction,
they were able to solve complex problems with an adequate
performance.

Comparing the calibration strategies purely for temporal
evaluations, the Regionalisation was the method with the
least performance. Taking the spatial evaluation into account
the Regionalisation method indicated the most robust mod-
els, closely followed by the Lumped method.

It is important to find a general way to define parameters
for hydrological models. This can be done via catchment
classification, which can assist the regionalisation of the
parameters. Therefore the dominant controls of catchment
structures must be understood (Wagener et al., 2007). Fur-
ther work is necessary regarding the improvement of transfer
functions, the optimal selection of catchment descriptors, the
suitable definition of multiple criteria objective functions and
applications to a larger number of catchments.
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