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Abstract. Two versions of the SWAT-model with different
dominating runoff generation processes have been applied.
One version comprises the original available SWAT version
where only the basic input data are used. In the second ver-
sion SWAT has been modified, by the integration of an im-
permeable layer at the subbasin level, in order to better re-
flect the boundary between soil and bedrock that results in
increased lateral flow in low mountain ranges. As well, since
conventional German soil maps do not describe soil horizons
beyond 2 m depth, we also added a 4 m fixed depth in the
lowland areas in order to reflect the deep loess deposits in
this region. The decision for the location of the impermeable
and the additional loess layer was based on a GIS analysis of
additional geologic information.

This study revealed that both model versions produced
acceptable and comparable results regarding the evaluated
goodness of fit measures. The GLUE analysis showed that
the SWAT model set up with additional information about
the distribution of impervious soil layers and the loess depth
in the lowlands produced the highest simulation quality and
the lowest uncertainty. Moreover, SWAT II version was able
to better represent the spatial extend of the dominating runoff
processes best. This leads to the conclusion that the SWAT II
version is better suited for scenario analysis than the original
model version.

1 Introduction

Mathematical models representing the water and nutrient
balance at watershed scale are gaining importance, for exam-
ple to assess measures for improving water quality in the Wa-
ter Framework Directive. Models are always simplifications
of natural systems which often rely on conceptual parame-
ters which cannot be measured in the real world (Gupta et

al., 2005; Beven, 2001). Hence the values of such conceptual
parameters need to be determined in a calibration process.
A “well-calibrated” model is essential for scenario analysis.
Following Gupta et al. (2005) the necessary features of such
a “well-calibrated” model are the ability of the model to re-
produce the measured behaviour of the study catchment with
small prediction uncertainty. Another vital feature is the ca-
pability of the model to capture the dominant ecological and
hydrological processes. This is a challenging task, particu-
larly in watersheds with heterogeneous landscape structures
and elements. One way to achieve this is the integration of
data which can not directly used in the model (soft data)
or expert knowledge into the model calibration or validation
process (Seibert and McDonnell, 2002). Vaché et al. (2004,
2006) have used soft data on mean transit time to test and re-
ject several model structures in order to find a model which
represents the governing hydrological processes best. An-
other way to consider soft data is the use of expert knowl-
edge, for example through the analysis of spatial data which
are not imperative for the model set up, but could be used as a
additional qualitative information. In the following paper we
show how to use such expert knowledge, gained by the anal-
ysis of additional soil and geological data to parameterize a
semi distributed hydrological model. Through an extended
uncertainty analysis we show that the additional information
helps to reduce the predictive uncertainty of the model.

2 Material and methods

2.1 Study area

The study was conducted in the mesoscale Wetter catch-
ment with an area of 514 km2, located approximately 50 km
north of Frankfurt/Main. The catchment can be divided
into three major landscape units which are characterised by
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Fig. 1.Overview of the study area; with(a) elevation,(b) land use and(c) soil depth.

heterogeneous characteristics. The SW part is formed by the
low mountain range of the Taunus. The central part of the
watershed belongs to the lowland of the Wetterau. The NW
region is formed by the foothills of the Vogelsberg, a vol-
canic low mountain range. Elevation ranges from 122 m to
568 m a.s.l. The mean annual temperature is around 8–10◦C
and the mean annual precipitation is around 500 mm in the
central part and up to 1000 mm at higher elevations (Fig. 1).

The low mountain ranges are characterized by steep slopes
and shallow soils with an average soil depth of 1 m. In these
parts the soils are mostly underlain by bedrock at a general
depth of 1m and the lowest soil horizons exhibit rock con-
tents of more than 70 %. Here, lateral subsurface stormflow
seems to be the dominating hydrological process. Soils in the
undulating lowland part of the watershed are deep with an
average soil depth of around 2 m. These soils were formed
mostly from large Pleistocene loess deposits and can exhibit
a thickness of up to 10 m in extremes. Vertical water move-
ment in these soils is expected to be dominant.

The land use in the area under study reflects the hetero-
geneous soil characteristics. The central part with the deep
loess soils is dominated by intensive agriculture whereas in
the low mountain ranges with the shallow soils mainly forests
or pastures can be found (Fig. 1).

2.2 Model

In the study we applied the widely known Soil and Water
Assessment Tool (SWAT, Arnold et al., 1998) is a semi-
distributed mathematical model to represent the water and

nutrient cycle at the watershed scale. It relies on empirical
as well as physical based process descriptions. The water-
shed is divided into subcatchments based on topography and
the river network. These sub catchments are further splitted
into HRU (hydrological response units) consisting of simi-
lar slope, land use and soils. The model consists of several
submodules which describe processes regarding soil hydrol-
ogy, plant growth, nutrient cycling (nitrogen and phospho-
rus), land management (agricultural practices), pollutant fate
(mainly pesticides), in-stream water quality and water rout-
ing. All processes considered in SWAT are calculated at a
daily time step. Model outputs of SWAT are water discharge,
nutrient and pollutant loads at the subbasins scale as well
as parameters of the water and nutrient balance at the HRU
scale (Neitsch et al., 2005).

2.3 Input data and model set up

Figure 2a shows the location of the climate and gauging sta-
tions used for model input and validation of model simula-
tions. Climate data from two temperature stations and seven
precipitation stations were used for the period 2005 to 2008.
Discharge measurements at daily time steps were available
for the same period for the gauging stations at the outlet
of the watershed as well as for four additional stations dis-
tributed within the watershed. During the period 2006 to
2008 snapshot measurements of nitrate concentrations were
taken at 4 locations in the catchment on an almost biweekly
basis. Additionally loads are calculated from the measured
discharge and nitrogen concentration at 4 sites.
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Fig. 2.Location of gauging stations(a) and model setup for model structure SWAT II(b). In addition to the general model set up of SWAT I,
impermeable soil layers in the low mountain region as well as additional deep soil layers in the centre of the watershed have been added in
SWAT II.

Two different model versions of SWAT were applied in
this study. The first version (further called model SWAT I)
is based on the established SWAT model set up with basic
spatial input data needed on topography, soils and land use
(Fig. 1). In the second model, SWAT II (Fig. 2b), we in-
cluded additional information on the geologic characteristics
of the watershed with the goal to better reflect the landscape
characteristics and the dominating hydrologic processes. In
low mountainous areas we added an impermeable layer at
a depth of 1.2 m at the subbasin scale in order to better re-
flect the boundary between soil and bedrock. This stresses the
dominant hydrologic process of subsurface flow in SWAT II.
The decision whether to add the impermeable layer or not
is made based on GIS-analyses of slope, soil depth and rock
content. Only those subbasins received an impermeable layer
where steep slopes (slopes larger than 20 %), soil depths of
at most 1 m and rock contents of more than 75 % in the low-
est horizon are dominant. In the low land we added an addi-
tional soil layer of 4 m depth with the properties of the typical
loess soils for a better representation of the deep pleistocenic
deposits in the catchment. The layers were only added to
subbasins and those soils which have a reported soil depth
of 2 m and where the depth of the loess deposits are larger
than 4 m. The subbasins where neither of the aforementioned
landscape features are edominant (no signature in Fg. 2b) are
set up with the basic input data used also in SWAT I. Infor-
mation for the SWAT II set up was gained from the analysis
of available soil data and as well as from the explanation re-
ports from bore hole drillings and geological maps (Kegel,
1979; Kümmerle, 1976, 1981).

2.4 GLUE approach

To compare both model versions and to identify the model
structure with the better we carried out an uncertainty analy-
sis, by applying the GLUE approach to both models (Beven
and Binley, 1992; Beven and Freer, 2001). The GLUE
method is based on Monte-Carlo simulations where an ar-
bitrary number of parameters are varied within user-defined
ranges. For each combination of parameters a model re-
alization is obtained. The simulated and measured outputs
for a variable of interest are compared for one or more
goodness-of-fit measures (e.g. Legates and McCabe, 1999).
By means of a user-defined threshold for the evaluated
goodness-of-fit (GOF) measure all realizations are discrim-
inated into behavioural and non-behavioural model runs. All
non-behavioural model runs are discarded. The goodness-of-
fit values for the behavioural runs are weighted and rescaled
in a way that their sum equals one. With the rescaled
goodness-of-fit measures a cumulative distribution is calcu-
lated from which user-defined uncertainty bounds can be cal-
culated.

For the GLUE analysis we generated 5000 parameter
sets with a Latin hypercube sampling scheme by varying
model parameters concerning channel routing, groundwater
description, soil physical properties and nitrogen balance.
The varied parameters and their ranges can be obtained from
Table 1. For each parameter set one model run has been re-
alized and a set of goodness-of-fit measures has been cal-
culated for the time period 2007–2008. The GOF are the
model efficiency Nash Sutcliff Efficiency (NSE) and log-
arithmized model efficiency NSE-log following Nash and
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Table 1.SWAT parameter ranges used for the Monte-Carlo simulation.

SWAT-model parameter [units] Lower bound Upper bound

Surface run off lag time [d] 1 10
Manning‘s roughness coefficient main channel [–] 0.01 0.3
Hydraulic conductivity channel bottom [mm h−1] 0 25
Baseflow alpha factor [d−1] 0.01 1
Groundwater delay time [d] 1 25
Groundwater revap coefficient [–] 0.02 0.2
Threshold for baseflow [mm] 0 100
Available water capacity [mm mm−1] −15∗ 15∗

soil hydraulic conductivity I [mm h−1] (<75% rock ) −15∗ 15∗

soil hydraulic conductivity II [mm h−1] (>75% rock) 10 150
Rate factor humus mineralization [–] 0.0001 0.001
Nitrogen uptake distribution parameter [–] 10 30
Nitrate percolation coefficient [–] 0.01 1
Residue decomposition coefficient [–] 0.01 0.1
Denitrification rate coefficient [–] 0 3.0
Threshold for denitrification [–] 0.5 1.10

∗ value altered±15 % from input

Sutcliffe (1970), the Index of Agreement (d) following Will-
mott (1981) as well as the absolute model bias (PBIAS).
Equations (1)–(4) describe the calculated GOF withSi be-
ing the simulated value (discharge, nitrate load) at time step
i andOi representing the observed value at time stepi. Ō is
the mean of all measured values.

NSE= 1−

∑N
i=1(Si − Oi)

2∑N
i=1(Oi − Ō)2

(1)

NSE− log = 1−

∑N
i=1(logSi − logOi)

2∑N
i=1(logOi − logŌ)2

(2)

d = 1−

∑N
i=1(Oi − Si)

2∑N
i=1(|Si − Ō| + |Oi − Ō|)2

(3)

PBIAS=
|
∑N

i=1(Si − Oi)|∑N
i=1Oi

· 100 (4)

We calculated NSE, NSE-log, d and PBIAS to compare sim-
ulated and observed discharge for the five discharge gaug-
ing stations. For the evaluation of simulated nitrate loads we
calculated d and PBIAS for the four sites where nitrate con-
centrations and calculated loads were available. To achieve
a good simulation quality for the whole watershed we cal-
culated the mean value for each GOF over all measurement
sites, resulting in a total of six GOF values. These mean val-
ues were then taken as objective function for the GLUE anal-
ysis. We performed one GLUE analysis for each GOF. To
make the GLUE analysis comparable to the applied model

versions we decided to set the threshold for identification of
acceptable and non-acceptable runs to 70 % of the maximum
value achieved for each GOF measure. For the further uncer-
tainty analysis we only selected those parameter sets which
were identified as behavioural for all six GOF.

3 Results and discussion

The GLUE analysis revealed that for SWAT I no parameter
set could be identified acceptable for all six objective func-
tions. After omitting NSE-log as objective function for the
analysis 325 parameter sets were identified as acceptable for
all remaining GOF measures. We used the remaining set of
model runs in the further analyses of the SWAT I model
structure, keeping in mind the reduced requirement we at-
tributed to this ensemble. For SWAT II in contrast 19 param-
eter sets were recognized to be behavioural for all six GOFs.

Figure 3 presents the values of the two SWAT ensembles
for the GOF concerning the simulated discharge at all five
gauging stations for the simulation period 2007–2008. Both
model versions yield the best values for all objective func-
tions at the main outlet. Considerable differences between
both models can be seen for PBIAS and NSE-log where
SWAT II has a better performance predominantly in the
three headwater catchments. These headwater catchments
are mainly dominated by the low mountain ranges where
SWAT I predicts groundwater flow and SWAT II lateral flow
as the dominant runoff process. As the NSE-log criterion es-
pecially considers periods with low discharge (Bekele and
Nicklow, 2007) we conclude that SWAT II is more capable
to reproduce low flow dynamics as compared to SWAT I.
Slightly less good results of discharge simulations for NSE

Adv. Geosci., 31, 31–38, 2012 www.adv-geosci.net/31/31/2012/



S. Julich et al.: Integrating heterogeneous landscape characteristics into watershed scale modelling 35

Fig. 3.Performance of the parameter ensembles of SWAT I and SWAT II for the goodness-of-fit measures concerning discharge; the respective
gauging stations are indicated with Br = Bruchenbrücken, Fr = Friedberg, Kr = Kransberg, Mu = Muschenheim, Mue = Münster.

for SWAT II can be explained by a offset of simulated and
measured discharge peak, indicating that the absolute amount
predicted discharge is in agreement but that wrong timing is
responsible for the reduced model performance.

Figure 4a–d presents the average annual groundwater flow
and the average annual lateral flow at the subbasin scale for
the two SWAT structures derived from the GLUE analysis.
SWAT I (Fig. 4a and c) simulates high groundwater flow and
low lateral flow in the low mountain ranges. SWAT II (Fig. 4b
and d) shows the opposite behaviour in predicting mainly lat-
eral subsurface flow in the hilly regions. These results are
in agreement with other studies which also predicted lateral
flow as major runoff process in low mountain ranges (Herge-
sell, 2003; Eckhardt et al., 2002). For the central part of the
watershed SWAT II predicts low groundwater flow as well as
low lateral flow. This could be expected from the landscape
features of this area with the large loess deposits. These de-
posits act as soil storages which only slowly releases water.
These findings are supported by observations of Kümmerle
(1976, 1981) who stated that the amount of discharge of
rivers flowing into this region is not increasing and that the
river are losing water via infiltration through the river bed,
indicating that barely no baseflow contribution takes place in
that part of the watershed.

Figure 5 presents the simulated and observed hydrographs
for the gauging stations Bruchenbrücken (main outlet) and

Fig. 4.Mean annual predicted groundwater flow for SWAT I(a) and
SWAT II (c) and mean annual predicted lateral subsurface flow for
SWAT I (b) and SWAT II(d).
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Fig. 5. Span of simulated (shaded grey) and observed (black line) discharge for the gauging stations Bruchenbrücken and M̈unster for the
year 2008 and the parameter ensembles of SWAT I and SWAT II.

Münster (headwater subbasin) for the two SWAT versions
for the last year (2008) of the simulation period. The sim-
ulated hydrographs are depicted as 95 % uncertainty bands
in order to express the predictive uncertainty of the consid-
ered model versions. In general both models show a sufficient
agreement with the seasonal variations and dynamics of the
observed hydrographs. This applies also for the gauging sta-
tions and periods not presented here. The major difference
between the individual SWAT versions is the width of the
calculated uncertainty bands shown in Fig. 5. The large dis-
crepancy is partly explained by the additional GOF of the
SWAT II model that further constraints behavioural param-
eter sets (325 models set ups for SWAT I as compared to
19 models set ups for SWAT II). The parameter ensemble of
SWAT I yields a maximum value for NSE of 0.59 whereas
the ensemble for SWAT II reaches slightly higher values of
NSE with 0.65. Results of both SWAT predictions concern-
ing NSE are in the range of SWAT applications published
elsewhere (Rouhani et al., 2007; Moriasi et al., 2007; Fohrer
et al., 2002) and can be considered as acceptable in this re-
gard. However, the two SWAT models structures fail to re-
produce single storm events during the summer time, most
likely due to the fact that no precipitation is recoded around
these dates by any of the precipitation stations. Over esti-
mations of low flow periods especially at the main outlet is
attributed to the over prediction of effluent discharges from
waste water treatment plants (WWTP) by the model. WWTP
located in the catchment have a total size of 250 251 popula-
tion equivalents. To account for the WWTP input we used a
constant daily discharge according to their size as no further
detailed data are available.

Figure 6 presents the predicted nitrate loads for the gaug-
ing stations Bruchenbrücken (main outlet) and M̈unster
(nested headwater subbasin) for the two SWAT versions for
the last year of the simulation period. Comparable to the pre-
dicted flows SWAT I exhibit a wider uncertainty band com-
pared to SWAT II. Nitrate is highly soluble and leaves the
soils via leaching. Therefore the nitrate export in a watershed
is closely linked to the dominant hydrological runoff pro-
cesses. As demonstrated above the SWAT I was not able to
predict the expected hydrological processes in the watershed
which propagates also in a flawed depiction of nitrate trans-
port pathways. SWAT II was found to be better represent-
ing the runoff generation processes in the catchment which
speaks also for a better representation of the nitrate export
in the model, reflected in the smaller uncertainty bands of
SWAT II in Fig. 6. The credibility of both model structures
with respect to the simulation of higher temporal dynam-
ics or seasonal variations cannot be evaluated due to miss-
ing hydro-chemical data. In response, we did not evaluate
NSE or NSE-log for nitrate and suggest to improve monitor-
ing schemes of N solutes in the catchment. For example, the
sampling of single rain storm events as proposed by Seibert
and Beven (2009) for discharge and nitrate could be help-
ful to examine the behaviour of the predicted loads in short
temporal resolution and under various flow conditions.

4 Conclusions

In this study we compare the performance of two SWAT
models regarding their accuracy, prediction uncertainty and
ability to reflect the governing runoff generation processes in
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Fig. 6.Span of simulated (shaded grey) and observed (black dots) nitrate loads for the gauging stations Bruchenbrücken and M̈unster for the
year 2008 and the parameter ensembles of SWAT I and SWAT II.

the watershed under study. These features are essential for a
model to be considered well calibrated and therefore applica-
ble for scenario analysis. The basic SWAT version (SWAT I)
fails to reproduce the expected major hydrological processes
in the catchment mainly in the low mountain ranges, leading
to high prediction uncertainties for simulated discharge and
nitrate loads. Moreover this model version is associated with
larger uncertainties, reflected by the high number of accept-
able parameter sets and the resulting wide variation of pre-
dicted discharge and nitrate loads. The second model version
(SWAT II) was extended with expert knowledge regarding
the landscape characteristics. This knowledge was gained by
an intensive spatial analysis of additional soil and geologi-
cal data that are not required for a SWAT model setup. The
inclusion of additional information leads to a satisfactorily
reproduction of measured discharge and nitrogen loads with
a relatively low degree of uncertainty. The model is also able
to better resemble the major landscape characteristics and
the associated hydrological processes. The constraint num-
ber of acceptable parameter sets additionally expresses a low
predictive uncertainty of the model. According to the above
mentioned criteria SWAT II can be considered as a “well-
calibrated” model and is therefore more suitable for scenario
analysis than SWAT I. With the study we could demonstrate
that expert knowledge about the governing hydrologic pro-
cesses helped to refine model structures and hence reduced
predictive uncertainty of model outputs.
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