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Abstract. In flow forecasting, additionally to the need of Basins) initiative of the International Association for Hydro-
long time series of historic discharges for model setup andogic Sciences (IAHS), which has dedicated the 2003-2012
calibration, hydrological models also need real-time dis-decade to focus research on this topic (Sivapalan et al., 2003).
charge data for the updating of the initial conditions at the The ungauged catchment case is important from both prac-
time of the forecasts. The need of data challenges operationaical and theoretical perspectives (Merz and%inhl, 2004),

flow forecasting at ungauged or poorly gauged sites. Thisand several approaches have been proposed to define hydro-
study evaluates the performance of different choices of pajogically homogeneous regions around ungauged sites and
rameter sets and discharge updates to run a flow forecastin transfer information from neighbour catchments to un-
model at ungauged sites, based on information from neighgauged basins. Various regionalisation methods have been
bour catchments. A cross-validation approach is applied on g@roposed in the literature. One of the most frequently used
set of 211 catchments in France and a 17-month forecastingechniques is regression analysis to model the relationship
period is used to calculate skill scores and evaluate the quabetween the model parameters and physiographic catchment
ity of the forecasts. A reference situation, where local in- attributes (Young, 2006; Kay et al., 2007; Reichl et al., 2009).
formation is available, is compared to alternative situations,Many of these approaches hinge on spatial proximity (catch-
which include scenarios where no local data is available at alments can either be nested neighbours or adjacent neigh-
and scenarios where local data started to be collected at theours) because catchments which are close to each other will
beginning of the forecasting period. To cope with uncertain-also behave similarly (e.g., Merz andidthl, 2004; Parajka
ties from rainfall forecasts, the model is driven by ensembleet al., 2005; Mcintyre et al., 2005; Young, 2006; Oudin et al.,
weather forecasts from the PEARPeldo-France ensemble 2008; Kjeldsen and Jones, 2007, 2009). In this paper, spatial
prediction system. The results show that neighbour catchproximity was chosen as the criteria to define homogeneous
ments can contribute to provide forecasts of good quality atregion. Spatial proximity-based approaches can be justified
ungauged sites, especially with the transfer of parameter setsn explicit and implicit bases (Oudin et al., 2011):

for model simulation. The added value of local data for the

operational updating of the hydrological ensemble forecasts — explicit basis: neighbours share common climate and
is highlighted. physiographic characteristics that imprint the hydrolog-

ical behaviour of a catchment;

— implicit basis: neighbours also share the unobservable
1 Introduction or unquantifiable characteristics (underground parame-
ter, geological attributes), which we are often unable to
Predicting hydrological variables in ungauged catchments include in the approaches based on physical similarity.
has been singled out as one of the major issues in the hydro-
logical sciences at present. Considerable scientific effort ign hydrological forecasting, local discharge data is essential

currently coordinated via the PUB (Prediction in Ungaugedfor the two main operations involved in the prediction of un-
certain future conditions: (1) the simulation of precipitation

into discharge, for which long time series of historic dis-

Correspondence toA. Randrianasolo  charges for model setup and calibration are needed, and (2)
BY (annie.randrianasolo@cemagref.fr) the updating of forecasts, which takes into account observed
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data or observed errors between simulated and measured di¢
charges, both available prior to the time of forecast, to adjust
model inputs, internal states or outputs. It is widely acknowl-
edged that forecast updating may improve significantly the
quality of operational forecasts at short up to long lead times,
and efforts to collect and explore real-time data in hydrolog-
ical forecasting are crucial.

Studies on the issues of flood frequency estimation and
flow simulation in ungauged basins are however more com-
mon in hydrology then those dealing with flood forecasting
at ungauged sites (Ouarda et al., 2007; Oudin et al., 2008;
Kling and Nachtnebel, 2009; Reichl et al., 2009; Masih et
al.,, 2010). This paper is a contribution to improving flood
forecasting in ungauged basins. Its originality lies inusinga - , » =
simple regionalisation procedure to both model parameteri-
sation and updating of the forecasts. Fig. 1. Location of the 211 catchments studied in France.

Whether the basin is gauged or not, flood forecasting re-
mains uncertain at any site, particularly during periods of in-

tense rainfall. Uncertainty in flood forecasting arises from evapotranspiration and discharge are available. Meteoro-
many sources: precipitation observations and forecasts, iniogical data come from the meteorological analysis system
tial soil moisture conditions, discharge measurements, modeSAFRAN of Méteo-France (Quintana-Seiget al., 2008) for
parameters, etc. To account for uncertainties from precipitathe period 1970 to 2006. The potential evapotranspiration
tion forecasts, hydrological ensemble forecasting approachegas computed from temperature data using equations pro-
have been recently explored (see the review by Cloke anghosed by Oudin et al. (2005). Discharges come from the
Pappenberger, 2009). Generally, they rely on ensembl@anque Hydro (French database) and are available for a time
weather prediction systems, which propose alternative sceperiod that varies according to each catchment, from 7 to 35
narios for future states of the atmosphere, on the basis Ofears, with 75% of the catchments with more than 27 years
perturbed initial conditions and stochastic model parameterof data. Data were available at the daily time step.
izations during weather modelling.

The aim of this study is to evaluate hydrological ensem-5 5 Ensemble weather forecasts
ble forecasts at ungauged basins by using neighbour catch-
ments to define the parameters of the hydrological mode%

>z

he weather forecasts come from the meteorological ensem-

and to apply a forecast updating procedure. Neighbourhoo le prediction system PEARP oféo-France, based on the

is here defined by the criteria of simple geographical prox'global spectral ARPEGE model (Nicolau, 2002). Initial per-

Lr?]'t);u Déf;egire]tssgreengcgli;?é(;hthrzrr]srsrig;'rgg;g‘:}%?en ft:r et_urbations are generated by the singular vector technique and
gaug . Y 9 11 future precipitation scenarios are proposed for each day
casts are driven by an 11-member weather ensemble predic;

: . of forecast. For this study, forecasts were provided with a
tion system and flow forecasts are evaluated with the hel Y P

’ . -h time step, for a total forecast horizon of 60h, at a 8-
of typical skill measurements of forecast performance. The, . .

. . : km x 8-km grid resolution. Forecast data were aggregated
paper is organized as follows: data and models are first pre-

. ) at daily time steps to match the observed data and spatially
zﬁmti?:ére?eucsf.edz ,irt1htehnet2\e/arlngt?oondzlfo '?r?edf%\:ggiig :rned dtz veraged over the studied catchments (weighted mean using
“the surface of each grid cell inside the catchment) to obtain

scribedin Sect 3 Sect. 4 presents the results, and, finally, "the areal forecast precipitation at each lead time (i.e., for 24
Sect. 5, conclusions end this paper. and 48 h ahead). Early assessments of the PEARP system
have shown good skills for short-range prediction of severe
events (Thirel et al., 2008; Randrianasolo et al., 2010), even

2 Dataand models if the system still shows a certain lack of spread.

2.1 Observed data and catchments . ) ) .
2.3 Hydrological forecasting model: flow simulation

This study is based on a set of 211 catchments situated in ~ and forecast updating

France (Fig. 1). Meteorological and hydrological observed

data are necessary for calibrating and running the hydrologGRP is a lumped soil-moisture-accounting type rainfall-
ical model, as well as to evaluate the forecasts. For eachunoff model developed at Cemagref, in France, and de-
catchment, time series of observed precipitation, daily mearsigned specifically for flood forecasting (Berthet et al., 2009).
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Table 1. Synthesis of the scenarios tested and the abbreviations used for each test.

Test
Reference

Parameters
local

Acronym  Updating with. ..
LRef local data (L)

Case 1: Simulation with parameters from neighbours and updating with local discharge

Best neighbour LBN local data Best calibrated neighbour
1 Neighbour LIN local data Closest neighbour

5 Neighbours L5N local data Set of 5 neighbours

10 Neighbours L10N local data Set of 10 neighbours

15 Neighbours L15N local data Set of 15 neighbours

20 Neighbours L20N local data Set of 20 neighbours

Case 2: Simulation with parameters from neighbours and no updating

Best neighbour no updating XBN not performed Best calibrated neighbour
1 neighbour no updating X1N not performed Closest neighbour

5 neighbours no updating X5N not performed Set of 5 neighbours

10 neighbours no updating X10N not performed Set of 10 neighbours

15 neighbours no updating X15N not performed Set of 15 neighbours

20 neighbours no updating X20N not performed Set of 20 neighbours

Case 3: Simulation and updating with parameters and data from neighbours

Updating with best neighbour  NBN discharge of the best neighbour Best calibrated neighbour
Updating with 1 neighbour N1N discharge of the closest neighbour  Closest neighbour
Updating with 5 neighbours N5SN mean discharge of 5 neighbours Set of 5 neighbours
Updating with 10 neighbours ~ N10ON mean discharge of 10 neighbours  Set of 10 neighbours
Updating with 15 neighbours ~ N15N mean discharge of 15 neighbours  Set of 15 neighbours
Updating with 20 neighbours ~ N20N mean discharge of 20 neighbours  Set of 20 neighbours

Here, itis used at the daily time step. Input data are daily pre3 Methodology
cipitation and mean evapotranspiration.

Its mechanism is classic, with a production function, The hydrological forecasting system used in this study con-
which confronts the daily amounts of rainfall and evapotran-Sists of a rainfall-runoff simulation model and a proce-
spiration, and a routing function. It delays the release of ef-dure for forecast updating. For gauged catchments, model
fective precipitation over the next time steps. This function parametrization is made through a calibration procedure ap-
includes a linear routing by a unit hydrograph and a non-plied to historic time series of concomitant precipitation and
linear one via a routing store, which transforms the effectivedischarge observations. In real-time forecasting, the model
rainfall into flow at the catchments outlet. also uses the last observed discharge (which usually differs

The GRP model has three parameters to be calibrateffom the last simulated discharge) in order to adjust the state
against observed data: the first one is a volume-adjustmerftf the routing store in the model in such a way that the output
factor, which acts over the volume of the effective rainfall, Of the simulation agrees with the last observed discharge for
the second parameter is the maximum capacity of the routthe day preceding each day of forecast (for more details, see
ing store and the last parameter is the base time of the unfgerthet et al., 2009).
hydrograph. Note that unlike the GR4J model from which it ~ Thus, the use of the GRP hydrological forecasting model
derives (Perrin et al., 2003), in GRP, the capacity of the SMAOVer ungauged catchments presents two challenges, which
store is a fixed parameter. Finally, the forecasting model GRFequire transferring information from neighbour catchments:
uses a combination of two assimilation (updating) functions
for flow forecasting. The first integrates the last observed dis-
charge information at the time of the forecast to update the
state of the model routing store, while the second uses the last
observed forecast error to correct the forecasts (Berthet et al.,
2009). Only the first updating is activated in the version of
the model used in this study.

— first, to parameterize the model before launching the
forecasts;

— second, to update continuously (at each time step, and
in real-time) the state of the model routing store.

www.adv-geosci.net/29/1/2011/ Adv. Geosci., 29112011
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Fig. 2. Examples of predicted ensemble hydrographs for the catchmentare&aiuxonne (8900 k) and 2 days of lead time. Top

row: simulation with parameters from neighbour catchments and updating with local discharge. Middle row: simulation with parameters
from neighbour catchments and no updating. Bottom row: simulation and updating with parameters and data from neighbour catchments.
Neighbour catchments are: the best neighbour (left column; 11 members), the 5 (middle column; 55 members) and the 20 closest catchment
(right column; 220 members). In each graphic, the reference scenario (11 members) is at the top left and the observed discharges are plottec

3.1 Description of the different scenarios investigated of neighbours (also called “donors” using the common ter-
minology of regionalization studies) was defined here by the

During the first step of the study, a reference situation, wheré=uclidean distance, between the outlet of the ungauged site
local observed data were fully available, was simulated. Fo2nd the outlet of its neighbours (Eq. 1):

each catchment, the model was calibrated with historic local | ‘ P _ P
data and a set of optimal parameters was defined. This pafZ - \/(Xtarget_ Xneighbou) + (Vtarget— Yneighbou) @)

rameter set was then applied during a forecasting period (ingyhere Xtarges Yiarget are the geographic coordinates of the

dependent from the calibration per!od) and ensgmble streantatchment considered as ungauged &Rglghbour Yneighbour

flow forecasts were evaluated against observations. This sitare the coordinates of the neighbour. On average, the

uation is supposed to give the best forecasts. closest neighbour and the 20-th farthest neighbour are
In the second step, a cross-validation approach was imabout 2km and 32 km, respectively, away from the target

plemented: each catchment was considered as ungauged andgauged basin.

evaluated in its turn. Different strategies for model parame- The different situations investigated can be grouped in

ter setup and forecast updating were investigated. Local datthree general cases described below and summarized in Ta-

combined with data from neighbour catchments were usedble 1. An illustration of the resulting ensemble hydrographs

as well as data from neighbour catchments alone. Proximityis shown in Fig. 2.

Adv. Geosci., 29, 131, 2011 www.adv-geosci.net/29/1/2011/
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Case 1: Simulation with parameters from neighbours and3.3 Evaluation of model ensemble forecasts
updating with local discharge

This case corresponds to a situation where local dischargEOr €ach scenario, a streamflow ensemble is generated for
data start to be collected at the beginning of the forecasteach day of the forecasting period and for each forecast lead
ing period. This is a hypothetical situation where no his- time, consisting of 11~ forecasts, wher&/ is the number
toric data is available for model calibration and a gauging©f parameter sets (or neighbours) used to build the scenario.
station is only put in place at the outlet of the catchment atTherefore, for the scenario using the 5 nearest neighbours,
the time the forecasting system starts to operate. In this cas@&n ensemble of 55 (15) members was obtained for each
local discharge data can only be used in forecast updatingerecast, and so on for 10 (110 members), 15 (165 members)
(the case is kept simple, and does not deal with a progresand 20 (220 members) neighbours.
sive recalibration of the model while data accumulate). Pa- Three general types of criteria can be found as the basis
rameter sets have to be transferred from gauged neighbodf' the evaluation of forecasts (Murphy, 1993):
catchments to simulate streamflow ensembles. The alterna-
tive scenarios use model parameters from 1, 5, 10, 15 and
20 nearest neighbour catchments. A scenario using the pa-
rameter set from the neighbour catchment that gives the best _ qua“ty or accuracy which considers the correspon-
performance during model calibration was also tested. On dence between the forecast and the observation, and
average, the best neighbour, which is among the 20 neigh-
bours, is about 18 km away from the target ungauged basin. — Va!ue which concerns the economic worth of a forecast

Case 2: Simulation with parameters from neighbours and to Its user.

n in . .
° updat 9 . In this study, the quality of the ensemble streamflows ob-
This case is similar to the previous one, except that here[ . :
. ) ained from each scenario tested was assessed. Forecast val-
no local data are available at all: model parameters come .
. . es are compared to observed discharges over a 17-month
either from the best neighbour catchment or from the nearest ~". )
. L eriod of forecast evaluation (from 10 March 2005 to 31 July
1, 5, 15 and 20 neighbour catchments. No updating is use ) .
. . 006). Two lead times were considerdday 1for the 24 h
to correct the forecast in real-time. . o
Case 3+ Simulation and updating with parameters and after the time the forecast is issued dbady 2, for the 24 h
) P 9 P after Day 1, i.e., 48 h ahead the time of forecast. Typical

data from neighbours
.scores of forecast performance were computed over the fore-

Simulations at the target ungauged catchment are agalfl;st evaluation period. They are summarized below and de-
based on model parameters transferred from the best ne|gt%—

bour catchment and from the nearest 1, 5, 15 and 20 neigh-cnb(_}d In details in Jolliffe and Stephenson (2003):

bours. For the updating, a simple solution is tested, where _ The RMSE (root mean square erromeasures the dis-
the specific discharges from the neighbour catchments are  tance between the forecasts and the observations and
used. For the best and the closest neighbour scenarios, their gives a measure of the forecast accuracy. Its advantage
daily specific discharge observed prior to the day of forecast  js peing sensitive to large forecast errors and retaining
is used. For the multiple (5, 10, 15 and 20) neighbours sce-  the units of the forecast variable, thus being more easily
narios, the mean specific discharge observed at each neigh-  interpretable as a typical error magnitude. The RMSE

— consistencywhen the forecaster’s best judgment and
the forecast actually issued coincide,

bour site is transferred to the target site. was calculated with the average streamflow forecast
o given by the ensemble mean of each scenario tested, for

3.2 Calibration of the parameters of the each lead time and over the total number of days of the
“donor” catchments evaluation period. To compare the scores over the 211

studied catchments, we computed normalized scores by
dividing the RMSE of each catchment by its average
observed streamflow over the evaluation period.

Even if we test here the application of a flow forecasting
model to ungauged catchments, this involves the use of donor
catchments for which the hydrological model must have been
calibrated previously. Thus, each catchment considered in — The contingency tabldés a two-dimensional table that
turn as ungauged can benefit from a library of calibrated pa-  gives the discrete joint sample distribution of forecasts

rameter sets obtained from neighbouring gauged sites. and observations in terms of cell counts, with two pos-
In calibration, the persistence index (Kitanidis and Bras, sible outcomes (yes or no) for observed and forecasted

1980) was used as objective function. It compares the pre- events. A perfect forecast system would only pro-

dictions of the model with the prediction obtained by assum- ducehits (events are forecasted and observed) cord

ing that the best estimate for the future is given by the latest  rect rejections (events are neither forecasted nor ob-
discharge measurement. A description of the “step-by-step”  served), and nanisses(observed events are not fore-
global optimization procedure used here is given in Edijatno casted) orfalse alarms(forecasted events are not ob-
et al. (1999). served). Thresholds were specified to separate “yes”

www.adv-geosci.net/29/1/2011/ Adv. Geosci., 29112011



6 A. Randrianasolo et al.: Hydrological ensemble forecasting at ungauged basins

and “no” events. For the observed events, two stream- — The Discrete ranked probability scordDRPS is a
flow thresholds were defined for each catchment: the squared measure that compares the cumulative density

50-th and the 90-th percentiles of daily streamflows, function of a probabilistic forecast with the cumulative
computed over the evaluation period (hereafteg0 density function of the corresponding observation over
and 090, respectively). For the definition of forecasted a given number of discrete probability categories (i.e.,
events, two thresholds were selected: plo of the considering several streamflow thresholds). It is given

ensemble members forecast discharges exceeding the by (Eq. 4):
streamflow threshold, the event is considered a ‘fore- LK
casted event’. The values p$o6 chosen in this study are < N2
50% and 80% (hereaftep50 andp80, respectively). DRPS=E [K ;(y, o)) @)
The combination of these thresholds results in four con-
tingency tables, from which descriptive statistics can bewherek is the number of categories of the distribution of the
computed. A frequently used score, particularly when forecasts (here, defined by the threshalti, 020, 030.. ...
the non occurrence of the event is more frequent thanQ90 of streamflow quantiles);; is the forecast probability
its occurrence, is the Threat scofeg or the Critical for the categoryk ando; is the binary indicator for each
Success Index (CSIl is given by the number of hits categorykK (o; =1 if the event occurs in th& category and
divided by the total number of hits, misses and falseO0, if not). The operatoE denotes the average over the days
alarms. The worst possible score is 0 and the best is 1.0f the forecasting period.
Like in theBS skill scores were computed to compare the
— The Brier score(BS averages the squared differences performance of the system given by each scenario tested with
between pairs of forecast probabilities and the subsethe reference scenari®RPSSngaugedderived from the ap-
quent binary observed frequencies of a given event (e.g.plication of Eq. (3) to théORPS.
exceedance of a streamflow quantile). From Eq. (2), for
each realizatiory (here, day of forecast)y; is the fore-
cast probability of the occurrence of the event, given by
the ratio of ensemble members forecasting the event t
the size of the ensemble, ang=1 if the event occurs
and 0 if it does not occur:

4 Results

q:igure 2 shows an example of hydrographs obtained for some
of the different scenarios tested. The case of tt@En8aiver
at Auxonne (catchment area of 8900%nis illustrated for
1 the reference scenario LRef (gauged catchment) and for the
BS= —Z(yj —oj)2 (2) scenarios of ensemble predictions built from the best neigh-
N./=1 bour catchment, the 5 and the 20 nearest neighbours. The
multiple simulations can be seen to get wider (more disper-
The same streamflow thresholds used in the contingency tasive) as the number of ensemble members increases. Addi-
bles were considered to define an event: percenfi&8@and  tionally, the forecast members 6&se 1(Fig. 2, top), where
090. The Brier score is negatively oriented (smaller scoresimulations are performed with parameters from neighbours
better) and has a minimum value of O for a perfect (deter-and updating with local discharges, are closer to the observa-

ministic) system. tion than the other forecasting scenarios considering the same
In order to compare the Brier scorB with a refer-  number of neighbours. F@ase 2(simulations with param-
ence BSeferencd, it is convenient to define thBrier skill  eters from neighbours and no updating; Fig. 2, middle), a

score(BSS. The reference systems generally used are cli-higher variability of forecast members is observed, compar-

matology and persistence. Here, since the aim is to evaluatetively to the scenarios d@ase 3(simulation and updating

the added value of alternative scenarios for ungauged catchwith parameters and data from neighbours; Fig. 2, bottom),

ments, comparatively to the reference situation where modefor which the ensemble spread is low and the forecast mem-
calibration and updating are performed with local data, thebers are farther from the observation. The hydrographs pre-
scenario called “reference” (Table 1) is used to compute thesented in Fig. 2 correspond to one catchment and to a specific

BSeference The BSSingaugeds then given by: period in time (September 2005 to February 2006). Overall
results from the scores used to evaluate the quality of the
BS 1— BSscenariaungauged 3 forecasts allow to better capture the average quality obtained
$ngauged= B . ( . .
BSeferencegauged for each scenario. They are presented in the next paragraphs

. . . . o for the lead timeDay 2
The BSSis positively oriented (higher values indicate better

performance). It ranges fromoo to 1 (perfect deterministic 4.1  Normalized RMSE andCSI scores

system). Scores equal to 0 mean that the system does not give

further information than the reference and negative scores inFigure 3 shows the mean values of the normalized RMSE.
dicate a poorer forecasting system than the reference. The CSlfor the ensemble streamflow forecasts generated by

Adv. Geosci., 29, 131, 2011 www.adv-geosci.net/29/1/2011/
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each scenario is presented in Fig. 4, for the ensemble thresh
old p50 and for the streamflow thresholds @50 andQ90
(also for a 2-day lead time). No significant differences were
observed between the results with 50% and 80 % (not shown)
of ensemble members exceeding the streamflow thresholds
This is probably due the lack of spread of the PEARP mem-
bers, impacting the forecasts generated by the hydrological =«
model (Randrianasolo et al., 2010). On the contrary, the
CSl values decrease for the thresh@®0, comparatively

to the values for the threshol@50, for all scenarios. For
instance, for the reference scenario, the median values o
CSlvary from Q88 for 050 to 069 for 090. The perfor-
mance for forecasting higher events is thus lower, although
it has also to be considered that the number of events use(
in the computation of the scores is smaller. In general, for
both RMSE andCSl scores, the ensemble scenarios built |
when updating is carried out with local discharges give bet- Lref
ter performance, with results closer to the reference situa- LBN SN LISN XBN XSN XISN NBN NSN  NISN
tion. The updating with specific discharges from neighbour _ )

ctchrents does ot improve the orecasts, O the contarS % e VALes o onees SUSE o e e e
it gives the worst average performgnce_. The performanc rom 10 March 2005 to 31 July 2006). Boxplots for the 211 studied
for the non-updated forecast scenarios is between these t

o) .
- . . atchments: the top and the bottom of the box represent the 75-th
cases of updating tested (with local data and with data trans; P P

. ‘ and the 25-th percentile, respectively, while the top and the bottom
ferred from neighbours). Small differences of performanceqs the tail indicate the 95-th and the 5-th percentile, respectively.
are observed when using 1, 5, 10 and 20 neighbours, withyedian values are indicated.

a small improvement when increasing the number of neigh-

bours. Distinctively, when comparing the results from the

scenario based on the closest neighbour and the scenartbe case when updating is performed with the average of spe-
based on the best neighbour (both scenarios have the saneéic discharges from neighbours (scenarios fi©ase 3, for
number of ensemble members), the results show that the fomwhich the closest neighbour performs on average better than
mer surpasses more often the latter. The scenario with théhe best neighbour. Moreover, for the skill SCB®Sungauged
best neighbour catchment as donor, regardless its proximitand the Q50 threshold (Fig. 5, top), around 50% of the catch-
to the target catchment, has in most cases the worst mediaments give positive skill scores (better performance than the

5
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score value in each group of cases considered. reference scenario), while the same is observed for around
25% of the catchments for tHeSSyngaugesand the Q90%

4.2 Skill scores threshold (Fig. 5, middle) and tHeRPSSungauged(Fig. 5,
bottom).

Figure 5 shows the skill scores &SSand DRPSSwhen

using the reference scenario as a reference forecast. The3 Best scenario for each catchment

same conclusions as previously are obtained on the overall

behaviour of the scores: the updating with local observationd-or each performance measure, the best scenario obtained
provides better performanc€gse ), the non-updated fore- was plotted for each catchment (Fig. 6). Most often, the sce-
casts present intermediate resul®age 2, and the updat- narios using parameters from neighbours and updating pro-
ing with data from neighbour catchments presents the lowestedure with local data provide the best performance, con-
performanceCase 3. The scenarios that perform better are firming the overall results presented previously. However,
those when 5 to 20 neighbours are taken into account. It isn a few catchments, this is not the case for all performance
interesting to note that, for more than 75% of the ungaugedneasures. For instance, the maps of normalized RMSE and
catchments, the gain is positive in the scenarios built with pa-CSlscores (Fig. 6a—c) show some catchments where the best
rameters from 5 to 20 neighbours and updating based on loscenario is one of the non-updated situations (scenarios from
cal observations, showing that these scenarios give forecastase 3: 12% of catchments for the RMSE score, 5% for the
with higher skill, in a probabilistic way, than the reference CSI exceedingQ50 and 20% for theCSI exceedingQ90.
forecast. Particularly for the non-updating case (scenarioSome scenarios based on updating with discharge data from
from Case 2, the average performance of the best neighboumeighbours (scenarios fro@ase 3 appear to be even better

is significantly better than the performance for the scenarioghan the other scenarios in few catchments: as an example,
with 1, 5, 10, 15 and 20 closest neighbours. This is no longeifor the scoreCSlexceeding?90 (Fig. 6¢) 12 catchments (out
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Fig. 4. Mean values o€Slfor the reference and the scenarios tested (forecast lead time of 2 days and evaluation period from 10 March 2005
to 31 July 2006).CSlfor p50 exceeding the discharge percentile Q50 (left) and Q90 (right). Boxplots for the 211 studied catchments: the
top and the bottom of the box represent the 75-th and the 25-th percentile, respectively, while the top and the bottom of the tail indicate the
95-th and the 5-th percentile, respectively. Median values are indicated.

of 211) are in this situation. They are particularly situated in
the Eastern part of France, where the density of the studied
5 S S e TR T, 1 catchments is more important. Considering the number of
" ?? T % T 1| S| S | neighbours to be used when building the streamflow ensem-
bles, the closest neighbour shows more often the best per-
formance when focusing on the deterministic-based scores
(RMSEandCsSl). However, for the probabilistic-based scores

LEN ‘ Lan ‘ Lo ‘ Xen ’ Xon | x5 ‘ Nen | No ‘ . | (BSandDRPY, the scenarios that more often perform bet-
LN LN LoN  XIN XN Xan  Niv o NN Naow ter are those when 5 to 20 neighbours are taken into account.

o I LI AR BB 000000 AR Also, when focusing on large events, it is interesting to note
9 1 : e T T T T A e e that, for some catchments, the scenario that performs better
7 i becomes the scenario built with the best neighbour. This is

noted when the results from th&SI| and BS scores for the
090 threshold are analysed comparatively to the scores for
the Q50 threshold. For the higher threshold, the best neigh-
bour scenario shows up for 2 and 19 catchments foBtBe
and theCSl score, respectively.

T T T T T T T T T
LBN | L5N | L15N | XBN ‘ X5N ‘ X15N | NBN ‘ N5N | N15N ‘

LIN L10N L20N XIN X10N X20N NiN NiON N20N

R T

o 5 Conclusions

g — : : : : : , : , This study investigates the use of information from gauged

o [ s | o [ xa [ s [ v [ v | e | neighbour catchments to run a hydrological forecasting sys-

tem at ungauged catchments. Different scenarios were con-

. _ . sidered, which combine the transfer of model parameters
Fig. 5. Mean values of skill scores for the scenarios tested

and relative to the reference scenario (forecast lead time of Zf rotmhnelgf:bofurcat.c?rnentstfcf)tqtall?/ S[.or partlzzll)t/z]urlgaugfed
days and evaluation period from 10 March 2005 to 31 July catchments for rainfall-runoft simufation, an € transfer

2006). Top:BSSyngaugedior the discharge percentile Q50. Mid- of observed d|s<_:har_ges for updating at the time of fore-
dle: BSSyngaugedfor the discharge percentile Q90. Bottom: cast. A cross—vglldatlon procedure was applied to 211 cgtch—
DRPSS;ngauged Boxplots for the 211 studied catchments: the top ments located in France. Hydrological models were driven
and the bottom of the box represent the 75-th and the 25-th perby weather ensemble predictions from PEARP o&tdb-
centile, respectively, while the top and the bottom of the tail indi- France (11 members and 2 days of forecast range). Hydro-
cate the 95th and the 5-th percentile, respectively. Median valuegogical ensemble forecasts were obtained for each scenario
are indicated. investigated and their performance was tested against a ref-
erence situation, where the target catchment is fully gauged

LN L10N L20N XIN X10N X20N NiN  NiON N2oN
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Fig. 6. Maps of the best performing scenario for each catchment according to the @dR@ASE (b) CSlfor p80 exceeding the discharge
percentile Q50(c) CSlfor p80 exceeding the discharge percentile0, (d) BSfor the discharge percentile Q5@&) BSfor the discharge
percentileQ90, and(f) DRPS Forecast lead time of 2 days and evaluation period from 10 March 2005 to 31 July 2006.

(i.e., historic and real-time data are available for model cal-most often show the performance that best approaches the
ibration and forecast updating). Typical forecast perfor- performance of the reference gauged situation. Additionally,
mance measures were applied over a 17-month evaluatiofor these scenarios, in general, performance increases as the
period. Both deterministic-focused measures (RMSE anchumber of neighbours increases (from 1 to 20 neighbours as
CSI) and probabilistic-focused measur&SSand DRPS$ donors). This is particularly observed on the results from the
were considered. probabilistic-based performance measures. The increase in
The results showed that the use of parameters from neighspread of the streamflow ensemble predictions seems to have
bour catchments can provide forecasts of good quality at thé positive effect on these performance measures.
target ungauged site. This is particularly true when the trans- In the case where local discharge data is not available at
fer of parameters from gauged neighbours is accompaniedll and the target site is considered fully ungauged, the use of
by the implementation of a gauging station at the ungaugedpecific discharges data from neighbours to update the fore-
site, which provides local discharge information at the time casting system at the ungauged site did not prove to be an
of forecast for operational forecast updating. These scenareverall good solution. Better performance is reached if no
ios, where the target site is considered partially ungauged (napdating is carried out at all. Interestingly, the results from
historic data available for calibration, but data available at thethe probabilistic-based skill scores show that, while the case
time of forecast for updating of the system), are those thabf scenarios including neighbour data for updating show, in

www.adv-geosci.net/29/1/2011/ Adv. Geosci., 29112011
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general, lower median values of performance for the scenariday, A. L., Jones, D. A., Crooks, S. M., Calver, A., and Reynard, N.
that uses the best neighbour catchment (the catchment that S.: A comparison of three approaches to spatial generalization of
showed better performance in calibration), the opposite is rainfall-runoff models, Hydrol. Process., 20, 3953-3973, 2007.
observed for the case when no updating is performed: theSitanidis, P. K. and'Bras, R. L. Re{al-time forecasting with a con-
best neighbour scenario performs better than the 1 to 20 clos- ¢ePtual hydrologic model 2. Applications and results, Water Re-
est neighbour scenarios. It seems that in the non-updateg, S0U" ReS-, 16, 1034-1044, 1980. . .
case, the simulation part of the forecasting model prevails jeldsen, T. R. and Jones, D.: Estimation of an index flood using

- . data transfer in the UK, Hydrolog. Sci. J., 52(1), 86-98, 2007.
and, on average, better forecasts will be achieved when thRjeldsen, T.R. and Jones, D.: An exploratory analysis of error

system relies on parameters from the neighbour that gives components in hydrological regression modelling, Water Resour.
the best model performance in calibration. On the contrary, Res., 45, W02407, doi:10.1029/2007WR006283, 2009.

when neighbour-based updating is performed, the updatingling, H. and Nachtnebel, H. P.: A method for the regional estima-
component of the forecasting system is strengthened and it tion of runoff separation parameters for hydrological modelling,

is rather the closest neighbours that will give better forecast J. Hydrol., 364, 163-174, 2009.

performance. Masih, I., Uhlenbrook, S., Maskey, S, and Ahmad, M. D.: Region-
f alization of a conceptual rainfall-runoff model based on similar-

In summary, this study illustrates well the added value of ; A
Y Y ity of the flow duration curve: A case study from the semi-arid

having at least local fjata availe_lble at the time of the forecast  ~ o1 basin, Iran, J. Hydrol., 391, 188-201, 2010.

to perform t.he real-time updatlng of a hydrolqglcal eNSeM-p1cintyre, N., Lee, H., Wheater, H., Young, A., Wagener, T.. En-
ble forecasting system at sites where no historic data is avail- gemple predictions of runoff in ungauged catchments, Water Re-
able for the set up (calibration) of the rainfall-runoff simula-  gour. Res., 41, W12434, doi:10.1029/2005WR004289, 2005.
tion model. For a better quality of the hydrological ensemblemerz, R. and Bbschl, G.: Regionalisation of catchment model pa-
forecasts systems, if no local updating is possible, it is better rameters. J. Hydrol., 287, 95-123, 2004.

to rely on the transfer of the parameters from the neighbouMurphy, A. H.: What is a good forecast? An essay on the nature of
that showed best performance in calibration. If, in additionto  goodness in weather forecasting, Weather Forecast., 8, 281-293,
model parameter transfer, neighbour-based updating is per- 1993.

formed, the best solution is to rely on at least five closestNicolau, J.. Shortrange ensemble forecasting. In Proceed-
neighbour donors ings WMO/CBS Technical Conferences On Data Processing

and Forecasting Systems, Cairns, Australia, 2-3 December,
4 pp., available at:http://www.wmo.ch/pages/prog/www/DPS/
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