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Abstract. In flow forecasting, additionally to the need of
long time series of historic discharges for model setup and
calibration, hydrological models also need real-time dis-
charge data for the updating of the initial conditions at the
time of the forecasts. The need of data challenges operational
flow forecasting at ungauged or poorly gauged sites. This
study evaluates the performance of different choices of pa-
rameter sets and discharge updates to run a flow forecasting
model at ungauged sites, based on information from neigh-
bour catchments. A cross-validation approach is applied on a
set of 211 catchments in France and a 17-month forecasting
period is used to calculate skill scores and evaluate the qual-
ity of the forecasts. A reference situation, where local in-
formation is available, is compared to alternative situations,
which include scenarios where no local data is available at all
and scenarios where local data started to be collected at the
beginning of the forecasting period. To cope with uncertain-
ties from rainfall forecasts, the model is driven by ensemble
weather forecasts from the PEARP-Mét́eo-France ensemble
prediction system. The results show that neighbour catch-
ments can contribute to provide forecasts of good quality at
ungauged sites, especially with the transfer of parameter sets
for model simulation. The added value of local data for the
operational updating of the hydrological ensemble forecasts
is highlighted.

1 Introduction

Predicting hydrological variables in ungauged catchments
has been singled out as one of the major issues in the hydro-
logical sciences at present. Considerable scientific effort is
currently coordinated via the PUB (Prediction in Ungauged
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Basins) initiative of the International Association for Hydro-
logic Sciences (IAHS), which has dedicated the 2003–2012
decade to focus research on this topic (Sivapalan et al., 2003).
The ungauged catchment case is important from both prac-
tical and theoretical perspectives (Merz and Blöschl, 2004),
and several approaches have been proposed to define hydro-
logically homogeneous regions around ungauged sites and
to transfer information from neighbour catchments to un-
gauged basins. Various regionalisation methods have been
proposed in the literature. One of the most frequently used
techniques is regression analysis to model the relationship
between the model parameters and physiographic catchment
attributes (Young, 2006; Kay et al., 2007; Reichl et al., 2009).
Many of these approaches hinge on spatial proximity (catch-
ments can either be nested neighbours or adjacent neigh-
bours) because catchments which are close to each other will
also behave similarly (e.g., Merz and Blöschl, 2004; Parajka
et al., 2005; McIntyre et al., 2005; Young, 2006; Oudin et al.,
2008; Kjeldsen and Jones, 2007, 2009). In this paper, spatial
proximity was chosen as the criteria to define homogeneous
region. Spatial proximity-based approaches can be justified
on explicit and implicit bases (Oudin et al., 2011):

– explicit basis: neighbours share common climate and
physiographic characteristics that imprint the hydrolog-
ical behaviour of a catchment;

– implicit basis: neighbours also share the unobservable
or unquantifiable characteristics (underground parame-
ter, geological attributes), which we are often unable to
include in the approaches based on physical similarity.

In hydrological forecasting, local discharge data is essential
for the two main operations involved in the prediction of un-
certain future conditions: (1) the simulation of precipitation
into discharge, for which long time series of historic dis-
charges for model setup and calibration are needed, and (2)
the updating of forecasts, which takes into account observed
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data or observed errors between simulated and measured dis-
charges, both available prior to the time of forecast, to adjust
model inputs, internal states or outputs. It is widely acknowl-
edged that forecast updating may improve significantly the
quality of operational forecasts at short up to long lead times,
and efforts to collect and explore real-time data in hydrolog-
ical forecasting are crucial.

Studies on the issues of flood frequency estimation and
flow simulation in ungauged basins are however more com-
mon in hydrology then those dealing with flood forecasting
at ungauged sites (Ouarda et al., 2007; Oudin et al., 2008;
Kling and Nachtnebel, 2009; Reichl et al., 2009; Masih et
al., 2010). This paper is a contribution to improving flood
forecasting in ungauged basins. Its originality lies in using a
simple regionalisation procedure to both model parameteri-
sation and updating of the forecasts.

Whether the basin is gauged or not, flood forecasting re-
mains uncertain at any site, particularly during periods of in-
tense rainfall. Uncertainty in flood forecasting arises from
many sources: precipitation observations and forecasts, ini-
tial soil moisture conditions, discharge measurements, model
parameters, etc. To account for uncertainties from precipita-
tion forecasts, hydrological ensemble forecasting approaches
have been recently explored (see the review by Cloke and
Pappenberger, 2009). Generally, they rely on ensemble
weather prediction systems, which propose alternative sce-
narios for future states of the atmosphere, on the basis of
perturbed initial conditions and stochastic model parameter-
izations during weather modelling.

The aim of this study is to evaluate hydrological ensem-
ble forecasts at ungauged basins by using neighbour catch-
ments to define the parameters of the hydrological model
and to apply a forecast updating procedure. Neighbourhood
is here defined by the criteria of simple geographical prox-
imity. Different scenarios for the transfer of information to
ungauged sites are evaluated. Hydrological ensemble fore-
casts are driven by an 11-member weather ensemble predic-
tion system and flow forecasts are evaluated with the help
of typical skill measurements of forecast performance. The
paper is organized as follows: data and models are first pre-
sented in Sect. 2; then the methodology developed and the
skill scores used in the evaluation of the forecasts are de-
scribed in Sect. 3; Sect. 4 presents the results, and, finally, in
Sect. 5, conclusions end this paper.

2 Data and models

2.1 Observed data and catchments

This study is based on a set of 211 catchments situated in
France (Fig. 1). Meteorological and hydrological observed
data are necessary for calibrating and running the hydrolog-
ical model, as well as to evaluate the forecasts. For each
catchment, time series of observed precipitation, daily mean

Fig. 1. Location of the 211 catchments studied in France.

evapotranspiration and discharge are available. Meteoro-
logical data come from the meteorological analysis system
SAFRAN of Mét́eo-France (Quintana-Seguı́ et al., 2008) for
the period 1970 to 2006. The potential evapotranspiration
was computed from temperature data using equations pro-
posed by Oudin et al. (2005). Discharges come from the
Banque Hydro (French database) and are available for a time
period that varies according to each catchment, from 7 to 35
years, with 75% of the catchments with more than 27 years
of data. Data were available at the daily time step.

2.2 Ensemble weather forecasts

The weather forecasts come from the meteorological ensem-
ble prediction system PEARP of Ḿet́eo-France, based on the
global spectral ARPEGE model (Nicolau, 2002). Initial per-
turbations are generated by the singular vector technique and
11 future precipitation scenarios are proposed for each day
of forecast. For this study, forecasts were provided with a
3-h time step, for a total forecast horizon of 60 h, at a 8-
km× 8-km grid resolution. Forecast data were aggregated
at daily time steps to match the observed data and spatially
averaged over the studied catchments (weighted mean using
the surface of each grid cell inside the catchment) to obtain
the areal forecast precipitation at each lead time (i.e., for 24
and 48 h ahead). Early assessments of the PEARP system
have shown good skills for short-range prediction of severe
events (Thirel et al., 2008; Randrianasolo et al., 2010), even
if the system still shows a certain lack of spread.

2.3 Hydrological forecasting model: flow simulation
and forecast updating

GRP is a lumped soil-moisture-accounting type rainfall-
runoff model developed at Cemagref, in France, and de-
signed specifically for flood forecasting (Berthet et al., 2009).
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Table 1. Synthesis of the scenarios tested and the abbreviations used for each test.

Test Acronym Updating with. . . Parameters
Reference LRef local data (L) local

Case 1: Simulation with parameters from neighbours and updating with local discharge

Best neighbour LBN local data Best calibrated neighbour
1 Neighbour L1N local data Closest neighbour
5 Neighbours L5N local data Set of 5 neighbours
10 Neighbours L10N local data Set of 10 neighbours
15 Neighbours L15N local data Set of 15 neighbours
20 Neighbours L20N local data Set of 20 neighbours

Case 2: Simulation with parameters from neighbours and no updating

Best neighbour no updating XBN not performed Best calibrated neighbour
1 neighbour no updating X1N not performed Closest neighbour
5 neighbours no updating X5N not performed Set of 5 neighbours
10 neighbours no updating X10N not performed Set of 10 neighbours
15 neighbours no updating X15N not performed Set of 15 neighbours
20 neighbours no updating X20N not performed Set of 20 neighbours

Case 3: Simulation and updating with parameters and data from neighbours

Updating with best neighbour NBN discharge of the best neighbour Best calibrated neighbour
Updating with 1 neighbour N1N discharge of the closest neighbour Closest neighbour
Updating with 5 neighbours N5N mean discharge of 5 neighbours Set of 5 neighbours
Updating with 10 neighbours N10N mean discharge of 10 neighbours Set of 10 neighbours
Updating with 15 neighbours N15N mean discharge of 15 neighbours Set of 15 neighbours
Updating with 20 neighbours N20N mean discharge of 20 neighbours Set of 20 neighbours

Here, it is used at the daily time step. Input data are daily pre-
cipitation and mean evapotranspiration.

Its mechanism is classic, with a production function,
which confronts the daily amounts of rainfall and evapotran-
spiration, and a routing function. It delays the release of ef-
fective precipitation over the next time steps. This function
includes a linear routing by a unit hydrograph and a non-
linear one via a routing store, which transforms the effective
rainfall into flow at the catchments outlet.

The GRP model has three parameters to be calibrated
against observed data: the first one is a volume-adjustment
factor, which acts over the volume of the effective rainfall,
the second parameter is the maximum capacity of the rout-
ing store and the last parameter is the base time of the unit
hydrograph. Note that unlike the GR4J model from which it
derives (Perrin et al., 2003), in GRP, the capacity of the SMA
store is a fixed parameter. Finally, the forecasting model GRP
uses a combination of two assimilation (updating) functions
for flow forecasting. The first integrates the last observed dis-
charge information at the time of the forecast to update the
state of the model routing store, while the second uses the last
observed forecast error to correct the forecasts (Berthet et al.,
2009). Only the first updating is activated in the version of
the model used in this study.

3 Methodology

The hydrological forecasting system used in this study con-
sists of a rainfall-runoff simulation model and a proce-
dure for forecast updating. For gauged catchments, model
parametrization is made through a calibration procedure ap-
plied to historic time series of concomitant precipitation and
discharge observations. In real-time forecasting, the model
also uses the last observed discharge (which usually differs
from the last simulated discharge) in order to adjust the state
of the routing store in the model in such a way that the output
of the simulation agrees with the last observed discharge for
the day preceding each day of forecast (for more details, see
Berthet et al., 2009).

Thus, the use of the GRP hydrological forecasting model
over ungauged catchments presents two challenges, which
require transferring information from neighbour catchments:

– first, to parameterize the model before launching the
forecasts;

– second, to update continuously (at each time step, and
in real-time) the state of the model routing store.
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Fig. 2. Examples of predicted ensemble hydrographs for the catchment La Saôneà Auxonne (8900 km2) and 2 days of lead time. Top
row: simulation with parameters from neighbour catchments and updating with local discharge. Middle row: simulation with parameters
from neighbour catchments and no updating. Bottom row: simulation and updating with parameters and data from neighbour catchments.
Neighbour catchments are: the best neighbour (left column; 11 members), the 5 (middle column; 55 members) and the 20 closest catchments
(right column; 220 members). In each graphic, the reference scenario (11 members) is at the top left and the observed discharges are plotted.

3.1 Description of the different scenarios investigated

During the first step of the study, a reference situation, where
local observed data were fully available, was simulated. For
each catchment, the model was calibrated with historic local
data and a set of optimal parameters was defined. This pa-
rameter set was then applied during a forecasting period (in-
dependent from the calibration period) and ensemble stream-
flow forecasts were evaluated against observations. This sit-
uation is supposed to give the best forecasts.

In the second step, a cross-validation approach was im-
plemented: each catchment was considered as ungauged and
evaluated in its turn. Different strategies for model parame-
ter setup and forecast updating were investigated. Local data
combined with data from neighbour catchments were used,
as well as data from neighbour catchments alone. Proximity

of neighbours (also called “donors” using the common ter-
minology of regionalization studies) was defined here by the
Euclidean distanced, between the outlet of the ungauged site
and the outlet of its neighbours (Eq. 1):

d =

√
(Xtarget−Xneighbour)2+(Ytarget−Yneighbour)2, (1)

whereXtarget,Ytarget are the geographic coordinates of the
catchment considered as ungauged andXneighbour, Yneighbour
are the coordinates of the neighbour. On average, the
closest neighbour and the 20-th farthest neighbour are
about 2 km and 32 km, respectively, away from the target
ungauged basin.

The different situations investigated can be grouped in
three general cases described below and summarized in Ta-
ble 1. An illustration of the resulting ensemble hydrographs
is shown in Fig. 2.
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Case 1: Simulation with parameters from neighbours and
updating with local discharge

This case corresponds to a situation where local discharge
data start to be collected at the beginning of the forecast-
ing period. This is a hypothetical situation where no his-
toric data is available for model calibration and a gauging
station is only put in place at the outlet of the catchment at
the time the forecasting system starts to operate. In this case,
local discharge data can only be used in forecast updating
(the case is kept simple, and does not deal with a progres-
sive recalibration of the model while data accumulate). Pa-
rameter sets have to be transferred from gauged neighbour
catchments to simulate streamflow ensembles. The alterna-
tive scenarios use model parameters from 1, 5, 10, 15 and
20 nearest neighbour catchments. A scenario using the pa-
rameter set from the neighbour catchment that gives the best
performance during model calibration was also tested. On
average, the best neighbour, which is among the 20 neigh-
bours, is about 18 km away from the target ungauged basin.

Case 2: Simulation with parameters from neighbours and
no updating

This case is similar to the previous one, except that here
no local data are available at all: model parameters come
either from the best neighbour catchment or from the nearest
1, 5, 15 and 20 neighbour catchments. No updating is used
to correct the forecast in real-time.

Case 3: Simulation and updating with parameters and
data from neighbours

Simulations at the target ungauged catchment are again
based on model parameters transferred from the best neigh-
bour catchment and from the nearest 1, 5, 15 and 20 neigh-
bours. For the updating, a simple solution is tested, where
the specific discharges from the neighbour catchments are
used. For the best and the closest neighbour scenarios, their
daily specific discharge observed prior to the day of forecast
is used. For the multiple (5, 10, 15 and 20) neighbours sce-
narios, the mean specific discharge observed at each neigh-
bour site is transferred to the target site.

3.2 Calibration of the parameters of the
“donor” catchments

Even if we test here the application of a flow forecasting
model to ungauged catchments, this involves the use of donor
catchments for which the hydrological model must have been
calibrated previously. Thus, each catchment considered in
turn as ungauged can benefit from a library of calibrated pa-
rameter sets obtained from neighbouring gauged sites.

In calibration, the persistence index (Kitanidis and Bras,
1980) was used as objective function. It compares the pre-
dictions of the model with the prediction obtained by assum-
ing that the best estimate for the future is given by the latest
discharge measurement. A description of the “step-by-step”
global optimization procedure used here is given in Edijatno
et al. (1999).

3.3 Evaluation of model ensemble forecasts

For each scenario, a streamflow ensemble is generated for
each day of the forecasting period and for each forecast lead
time, consisting of 11· N forecasts, whereN is the number
of parameter sets (or neighbours) used to build the scenario.
Therefore, for the scenario using the 5 nearest neighbours,
an ensemble of 55 (11· 5) members was obtained for each
forecast, and so on for 10 (110 members), 15 (165 members)
and 20 (220 members) neighbours.

Three general types of criteria can be found as the basis
for the evaluation of forecasts (Murphy, 1993):

– consistency, when the forecaster’s best judgment and
the forecast actually issued coincide,

– quality or accuracy, which considers the correspon-
dence between the forecast and the observation, and

– value, which concerns the economic worth of a forecast
to its user.

In this study, the quality of the ensemble streamflows ob-
tained from each scenario tested was assessed. Forecast val-
ues are compared to observed discharges over a 17-month
period of forecast evaluation (from 10 March 2005 to 31 July
2006). Two lead times were considered:Day 1 for the 24 h
after the time the forecast is issued andDay 2, for the 24 h
after Day 1, i.e., 48 h ahead the time of forecast. Typical
scores of forecast performance were computed over the fore-
cast evaluation period. They are summarized below and de-
scribed in details in Jolliffe and Stephenson (2003):

– TheRMSE (root mean square error)measures the dis-
tance between the forecasts and the observations and
gives a measure of the forecast accuracy. Its advantage
is being sensitive to large forecast errors and retaining
the units of the forecast variable, thus being more easily
interpretable as a typical error magnitude. The RMSE
was calculated with the average streamflow forecast
given by the ensemble mean of each scenario tested, for
each lead time and over the total number of days of the
evaluation period. To compare the scores over the 211
studied catchments, we computed normalized scores by
dividing the RMSE of each catchment by its average
observed streamflow over the evaluation period.

– The contingency tableis a two-dimensional table that
gives the discrete joint sample distribution of forecasts
and observations in terms of cell counts, with two pos-
sible outcomes (yes or no) for observed and forecasted
events. A perfect forecast system would only pro-
ducehits (events are forecasted and observed) andcor-
rect rejections (events are neither forecasted nor ob-
served), and nomisses(observed events are not fore-
casted) orfalse alarms(forecasted events are not ob-
served). Thresholds were specified to separate “yes”
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and “no” events. For the observed events, two stream-
flow thresholds were defined for each catchment: the
50-th and the 90-th percentiles of daily streamflows,
computed over the evaluation period (hereafter,Q50
andQ90, respectively). For the definition of forecasted
events, two thresholds were selected: ifp% of the
ensemble members forecast discharges exceeding the
streamflow threshold, the event is considered a ‘fore-
casted event’. The values ofp% chosen in this study are
50% and 80% (hereafter,p50 andp80, respectively).
The combination of these thresholds results in four con-
tingency tables, from which descriptive statistics can be
computed. A frequently used score, particularly when
the non occurrence of the event is more frequent than
its occurrence, is the Threat score (TS) or theCritical
Success Index (CSI). It is given by the number of hits
divided by the total number of hits, misses and false
alarms. The worst possible score is 0 and the best is 1.

– The Brier score(BS) averages the squared differences
between pairs of forecast probabilities and the subse-
quent binary observed frequencies of a given event (e.g.,
exceedance of a streamflow quantile). From Eq. (2), for
each realizationj (here, day of forecast),yj is the fore-
cast probability of the occurrence of the event, given by
the ratio of ensemble members forecasting the event to
the size of the ensemble, andoj = 1 if the event occurs
and 0 if it does not occur:

BS=
1

N

n∑
j=1

(yj −oj )
2 (2)

The same streamflow thresholds used in the contingency ta-
bles were considered to define an event: percentilesQ50 and
Q90. The Brier score is negatively oriented (smaller score
better) and has a minimum value of 0 for a perfect (deter-
ministic) system.

In order to compare the Brier score (BS) with a refer-
ence (BSreference), it is convenient to define theBrier skill
score(BSS). The reference systems generally used are cli-
matology and persistence. Here, since the aim is to evaluate
the added value of alternative scenarios for ungauged catch-
ments, comparatively to the reference situation where model
calibration and updating are performed with local data, the
scenario called “reference” (Table 1) is used to compute the
BSreference. TheBSSungaugedis then given by:

BSSungauged= 1−
BSscenarioungauged

BSreferencegauged
(3)

TheBSSis positively oriented (higher values indicate better
performance). It ranges from−∞ to 1 (perfect deterministic
system). Scores equal to 0 mean that the system does not give
further information than the reference and negative scores in-
dicate a poorer forecasting system than the reference.

– The Discrete ranked probability score(DRPS) is a
squared measure that compares the cumulative density
function of a probabilistic forecast with the cumulative
density function of the corresponding observation over
a given number of discrete probability categories (i.e.,
considering several streamflow thresholds). It is given
by (Eq. 4):

DRPS= E [
1

K

K∑
j=1

(yj −oj )
2
], (4)

whereK is the number of categories of the distribution of the
forecasts (here, defined by the thresholdsQ10,Q20,Q30,. . .
Q90 of streamflow quantiles),yj is the forecast probability
for the categoryK andoj is the binary indicator for each
categoryK (oj = 1 if the event occurs in theK category and
0, if not). The operatorE denotes the average over the days
of the forecasting period.

Like in theBS, skill scores were computed to compare the
performance of the system given by each scenario tested with
the reference scenario (DRPSSungaugedderived from the ap-
plication of Eq. (3) to theDRPS).

4 Results

Figure 2 shows an example of hydrographs obtained for some
of the different scenarios tested. The case of the Saône river
at Auxonne (catchment area of 8900 km2) is illustrated for
the reference scenario LRef (gauged catchment) and for the
scenarios of ensemble predictions built from the best neigh-
bour catchment, the 5 and the 20 nearest neighbours. The
multiple simulations can be seen to get wider (more disper-
sive) as the number of ensemble members increases. Addi-
tionally, the forecast members ofCase 1(Fig. 2, top), where
simulations are performed with parameters from neighbours
and updating with local discharges, are closer to the observa-
tion than the other forecasting scenarios considering the same
number of neighbours. ForCase 2(simulations with param-
eters from neighbours and no updating; Fig. 2, middle), a
higher variability of forecast members is observed, compar-
atively to the scenarios ofCase 3(simulation and updating
with parameters and data from neighbours; Fig. 2, bottom),
for which the ensemble spread is low and the forecast mem-
bers are farther from the observation. The hydrographs pre-
sented in Fig. 2 correspond to one catchment and to a specific
period in time (September 2005 to February 2006). Overall
results from the scores used to evaluate the quality of the
forecasts allow to better capture the average quality obtained
for each scenario. They are presented in the next paragraphs
for the lead timeDay 2.

4.1 Normalized RMSE andCSI scores

Figure 3 shows the mean values of the normalized RMSE.
TheCSI for the ensemble streamflow forecasts generated by
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each scenario is presented in Fig. 4, for the ensemble thresh-
old p50 and for the streamflow thresholds ofQ50 andQ90
(also for a 2-day lead time). No significant differences were
observed between the results with 50% and 80 % (not shown)
of ensemble members exceeding the streamflow thresholds.
This is probably due the lack of spread of the PEARP mem-
bers, impacting the forecasts generated by the hydrological
model (Randrianasolo et al., 2010). On the contrary, the
CSI values decrease for the thresholdQ90, comparatively
to the values for the thresholdQ50, for all scenarios. For
instance, for the reference scenario, the median values of
CSI vary from 0.88 for Q50 to 0.69 for Q90. The perfor-
mance for forecasting higher events is thus lower, although
it has also to be considered that the number of events used
in the computation of the scores is smaller. In general, for
both RMSE andCSI scores, the ensemble scenarios built
when updating is carried out with local discharges give bet-
ter performance, with results closer to the reference situa-
tion. The updating with specific discharges from neighbour
catchments does not improve the forecasts. On the contrary,
it gives the worst average performance. The performance
for the non-updated forecast scenarios is between these two
cases of updating tested (with local data and with data trans-
ferred from neighbours). Small differences of performance
are observed when using 1, 5, 10 and 20 neighbours, with
a small improvement when increasing the number of neigh-
bours. Distinctively, when comparing the results from the
scenario based on the closest neighbour and the scenario
based on the best neighbour (both scenarios have the same
number of ensemble members), the results show that the for-
mer surpasses more often the latter. The scenario with the
best neighbour catchment as donor, regardless its proximity
to the target catchment, has in most cases the worst median
score value in each group of cases considered.

4.2 Skill scores

Figure 5 shows the skill scores ofBSSand DRPSSwhen
using the reference scenario as a reference forecast. The
same conclusions as previously are obtained on the overall
behaviour of the scores: the updating with local observations
provides better performance (Case 1), the non-updated fore-
casts present intermediate results (Case 2), and the updat-
ing with data from neighbour catchments presents the lowest
performance (Case 3). The scenarios that perform better are
those when 5 to 20 neighbours are taken into account. It is
interesting to note that, for more than 75% of the ungauged
catchments, the gain is positive in the scenarios built with pa-
rameters from 5 to 20 neighbours and updating based on lo-
cal observations, showing that these scenarios give forecasts
with higher skill, in a probabilistic way, than the reference
forecast. Particularly for the non-updating case (scenarios
from Case 2), the average performance of the best neighbour
is significantly better than the performance for the scenarios
with 1, 5, 10, 15 and 20 closest neighbours. This is no longer

Fig. 3. Mean values of normalized RMSE for the reference and the
scenarios tested (forecast lead time of 2 days and evaluation period
from 10 March 2005 to 31 July 2006). Boxplots for the 211 studied
catchments: the top and the bottom of the box represent the 75-th
and the 25-th percentile, respectively, while the top and the bottom
of the tail indicate the 95-th and the 5-th percentile, respectively.
Median values are indicated.

the case when updating is performed with the average of spe-
cific discharges from neighbours (scenarios fromCase 3), for
which the closest neighbour performs on average better than
the best neighbour. Moreover, for the skill scoreBSSungauged
and the Q50 threshold (Fig. 5, top), around 50% of the catch-
ments give positive skill scores (better performance than the
reference scenario), while the same is observed for around
25% of the catchments for theBSSungaugedand the Q90%
threshold (Fig. 5, middle) and theDRPSSungauged(Fig. 5,
bottom).

4.3 Best scenario for each catchment

For each performance measure, the best scenario obtained
was plotted for each catchment (Fig. 6). Most often, the sce-
narios using parameters from neighbours and updating pro-
cedure with local data provide the best performance, con-
firming the overall results presented previously. However,
in a few catchments, this is not the case for all performance
measures. For instance, the maps of normalized RMSE and
CSIscores (Fig. 6a–c) show some catchments where the best
scenario is one of the non-updated situations (scenarios from
Case 2): 12% of catchments for the RMSE score, 5% for the
CSI exceedingQ50 and 20% for theCSI exceedingQ90.
Some scenarios based on updating with discharge data from
neighbours (scenarios fromCase 3) appear to be even better
than the other scenarios in few catchments: as an example,
for the scoreCSIexceedingQ90 (Fig. 6c) 12 catchments (out

www.adv-geosci.net/29/1/2011/ Adv. Geosci., 29, 1–11, 2011
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Fig. 4. Mean values ofCSI for the reference and the scenarios tested (forecast lead time of 2 days and evaluation period from 10 March 2005
to 31 July 2006).CSI for p50 exceeding the discharge percentile Q50 (left) and Q90 (right). Boxplots for the 211 studied catchments: the
top and the bottom of the box represent the 75-th and the 25-th percentile, respectively, while the top and the bottom of the tail indicate the
95-th and the 5-th percentile, respectively. Median values are indicated.

Fig. 5. Mean values of skill scores for the scenarios tested
and relative to the reference scenario (forecast lead time of 2
days and evaluation period from 10 March 2005 to 31 July
2006). Top:BSSungaugedfor the discharge percentile Q50. Mid-
dle: BSSungauged for the discharge percentile Q90. Bottom:
DRPSSungauged. Boxplots for the 211 studied catchments: the top
and the bottom of the box represent the 75-th and the 25-th per-
centile, respectively, while the top and the bottom of the tail indi-
cate the 95th and the 5-th percentile, respectively. Median values
are indicated.

of 211) are in this situation. They are particularly situated in
the Eastern part of France, where the density of the studied
catchments is more important. Considering the number of
neighbours to be used when building the streamflow ensem-
bles, the closest neighbour shows more often the best per-
formance when focusing on the deterministic-based scores
(RMSEandCSI). However, for the probabilistic-based scores
(BSandDRPS), the scenarios that more often perform bet-
ter are those when 5 to 20 neighbours are taken into account.
Also, when focusing on large events, it is interesting to note
that, for some catchments, the scenario that performs better
becomes the scenario built with the best neighbour. This is
noted when the results from theCSI andBSscores for the
Q90 threshold are analysed comparatively to the scores for
theQ50 threshold. For the higher threshold, the best neigh-
bour scenario shows up for 2 and 19 catchments for theBS
and theCSIscore, respectively.

5 Conclusions

This study investigates the use of information from gauged
neighbour catchments to run a hydrological forecasting sys-
tem at ungauged catchments. Different scenarios were con-
sidered, which combine the transfer of model parameters
from neighbour catchments to totally (or partially) ungauged
catchments for rainfall-runoff simulation, and the transfer
of observed discharges for updating at the time of fore-
cast. A cross-validation procedure was applied to 211 catch-
ments located in France. Hydrological models were driven
by weather ensemble predictions from PEARP of Mét́eo-
France (11 members and 2 days of forecast range). Hydro-
logical ensemble forecasts were obtained for each scenario
investigated and their performance was tested against a ref-
erence situation, where the target catchment is fully gauged
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Fig. 6. Maps of the best performing scenario for each catchment according to the score:(a) RMSE, (b) CSI for p80 exceeding the discharge
percentile Q50,(c) CSI for p80 exceeding the discharge percentileQ90, (d) BSfor the discharge percentile Q50,(e) BSfor the discharge
percentileQ90, and(f) DRPS. Forecast lead time of 2 days and evaluation period from 10 March 2005 to 31 July 2006.

(i.e., historic and real-time data are available for model cal-
ibration and forecast updating). Typical forecast perfor-
mance measures were applied over a 17-month evaluation
period. Both deterministic-focused measures (RMSE and
CSI) and probabilistic-focused measures (BSSandDRPSS)
were considered.

The results showed that the use of parameters from neigh-
bour catchments can provide forecasts of good quality at the
target ungauged site. This is particularly true when the trans-
fer of parameters from gauged neighbours is accompanied
by the implementation of a gauging station at the ungauged
site, which provides local discharge information at the time
of forecast for operational forecast updating. These scenar-
ios, where the target site is considered partially ungauged (no
historic data available for calibration, but data available at the
time of forecast for updating of the system), are those that

most often show the performance that best approaches the
performance of the reference gauged situation. Additionally,
for these scenarios, in general, performance increases as the
number of neighbours increases (from 1 to 20 neighbours as
donors). This is particularly observed on the results from the
probabilistic-based performance measures. The increase in
spread of the streamflow ensemble predictions seems to have
a positive effect on these performance measures.

In the case where local discharge data is not available at
all and the target site is considered fully ungauged, the use of
specific discharges data from neighbours to update the fore-
casting system at the ungauged site did not prove to be an
overall good solution. Better performance is reached if no
updating is carried out at all. Interestingly, the results from
the probabilistic-based skill scores show that, while the case
of scenarios including neighbour data for updating show, in

www.adv-geosci.net/29/1/2011/ Adv. Geosci., 29, 1–11, 2011
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general, lower median values of performance for the scenario
that uses the best neighbour catchment (the catchment that
showed better performance in calibration), the opposite is
observed for the case when no updating is performed: the
best neighbour scenario performs better than the 1 to 20 clos-
est neighbour scenarios. It seems that in the non-updated
case, the simulation part of the forecasting model prevails
and, on average, better forecasts will be achieved when the
system relies on parameters from the neighbour that gives
the best model performance in calibration. On the contrary,
when neighbour-based updating is performed, the updating
component of the forecasting system is strengthened and it
is rather the closest neighbours that will give better forecast
performance.

In summary, this study illustrates well the added value of
having at least local data available at the time of the forecast
to perform the real-time updating of a hydrological ensem-
ble forecasting system at sites where no historic data is avail-
able for the set up (calibration) of the rainfall-runoff simula-
tion model. For a better quality of the hydrological ensemble
forecasts systems, if no local updating is possible, it is better
to rely on the transfer of the parameters from the neighbour
that showed best performance in calibration. If, in addition to
model parameter transfer, neighbour-based updating is per-
formed, the best solution is to rely on at least five closest
neighbour donors.
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