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Abstract. For ecohydrological modeling climate variables
are needed on subbasin basis. Since they usually originate
from point measurements spatial interpolation is required
during preprocessing. Different interpolation methods yield
data of varying quality, which can strongly influence mo-
deling results. Four interpolation methods to be compared
were selected: nearest neighbour, inverse distance, ordinary
kriging, and kriging with external drift (Goovaerts, 1997).
This study presents three strategies to evaluate the influence
of the interpolation method on the modeling results of dis-
charge and nitrate load in the river in a mesoscale river catch-
ment (∼1000 km2) using the Soil and Water Assessment Tool
(SWAT, Neitsch et al., 2005) model:

I. Automated calibration of the model with a mixed cli-
mate data set and consecutive application of the four
interpolated data sets.

II. Consecutive automated calibration of the model with
each of the four climate data sets.

III. Random generation of 1000 model parameter sets and
consecutive application of the four interpolated climate
data sets on each of the 1000 realisations, evaluating the
number of realisations above a certain quality criterion
threshold.

Results show that strategies I and II are not suitable for eva-
luation of the quality of the interpolated data. Strategy III
however proves a significant influence of the interpolation
method on nitrate modeling. A rank order from the simplest
to the most sophisticated method is visible, with kriging with
external drift (KED) outperforming all others. Responsible
for this behaviour is the variable temperature, which benefits
most from more sophisticated methods and at the same time
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is the main driving force for the nitrate cycle. The missing in-
fluence of the interpolation methods on discharge modeling
is explained by a much higher measuring network density for
precipitation than for all other climate variables.

1 Introduction

Climate data as input for ecohydrological modeling are usu-
ally measured at individual points. For the modeling of larger
catchments, these data are needed on subbasin or raster basis,
consistently covering the whole study area. Thus, spatial in-
terpolation is necessary to upscale the data from point to area.
A large number of different interpolation methods has been
proposed over time (for a recent review see e.g. Tveito et al.,
2006). From the early, simple nearest neighbour technique
or Thiessen polygon method (Thiessen, 1911) via the inverse
distance weighting (e.g. Shepard, 1968), interpolation me-
thods evolved to more sophisticated geostatistical methods
like kriging in all its variants (Goovaerts, 1997), which are
becoming more and more popular. Many other techniques
e.g. based on splines (Hutchinson, 1998a,b) or genetic algo-
rithms (Demyanov et al., 1998; Huang et al., 1998) have also
been applied recently.

With such abundance of methods to select from the ques-
tion arises which method a modeler should apply for his par-
ticular case. Many studies have been carried out comparing
the predictive performance of interpolation methods via cross
validation (e.g. Dubois et al., 1998; Vicente-Serrano et al.,
2003; Stahl et al., 2006; Hofstra et al., 2008), often on a
monthly or annual basis. However, to our knowledge only
few studies so far examined the influence of different inter-
polation methods on the modeling results of rainfall-runoff
models on a daily or sub-daily basis concerning hydrolog-
ical validation (e.g. Kneis and Heistermann, 2009), and no
studies concerning the validation of interpolation methods
relating to nitrogen loads.
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Fig. 1. Study area.

This study focuses on four interpolation techniques,
namely nearest neighbour, inverse distance weighting, or-
dinary kriging, and kriging with external drift, and aims
to evaluate their influence on daily discharge and monthly
nitrate simulations with the ecohydrological model SWAT,
when all necessary climate input data is interpolated with
each of the four methods. Three strategies of model calibra-
tion and application have been developed in order to evaluate
the influence of the interpolation techniques.

2 Materials and methods

2.1 Study area and data

The investigation area is the upper Leine river catchment
with a size of approximately 1000 km2 (see Fig. 1). It is
part of the larger Aller river catchment, which covers most
of the south-eastern part of the federal state of Lower Sa-
xony in Northern Germany. The average annual precipitation
is about 700 mm and the mean annual temperature is around
8◦C. The elevation is between 533 m on the southern edge
of the catchment and 115 m at the gauge Leineturm, which is
the outlet of the catchment.

The geology in the study area is dominated by the Meso-
zoic sedimentary rock strata of the Muschelkalk and the
Buntsandstein west and east of the Leine trough. The Keu-
per, which is found in the subsurface of the actual trough, is
mostly covered by loess of several meters thickness. Also,
the broad Leine floodplains are filled with the fluvial sed-
iments gravel and coarse sand. Under these climatic and

geologic conditions Cambisols, Luvisols and gley soils deve-
loped as predominant soils, as well as Rendzinas and Rankers
on the more elevated terrain.

The main landuse is rain-fed agriculture, predominantly
in the flatter low-lying regions of the Leine valley, while the
more sloped terrain is dominated by semi-natural deciduous
and mixed forest. The main settlement in the area is the city
of Göttingen.

For this study, the investigation area is divided into
25 subcatchments (Fig. 1). Climate data is available from
the climate and precipitation network of the German Weather
Service (DWD), with a total of 94 climate stations and
378 precipitation gauges for the whole Aller catchment.
Only about 10 climate and 40 precipitation stations are near
or within the actual study area, but spatial interpolation was
done for the larger catchment. Out of the total number of sta-
tions about 50 climate stations and 250 precipitation gauges
were recording at any one time step, which were available
for interpolation. Six climate variables are needed by the
selected numerical model and thus were selected for inter-
polation. These are daily values for the sum of precipita-
tion, minimum and maximum temperature, relative humidity,
wind speed, and sunshine duration (which is converted into
solar radiation after interpolation).

The digital elevation model is the freely available SRTM
grid (USGS, 2004) with 90 m cell size, land use information
is taken from the CORINE Land Cover data set (Umweltbun-
desamt, 2004). Daily discharge measurements are available
from five gauges with four of them on the Leine river itself
and one on the tributary Garte. Out of the nine available
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water quality sampling sites with biweekly or monthly mea-
surements only three correspond to a discharge gage and
could be used in the study (see Fig. 1). Discharge and wa-
ter quality data were obtained from the Lower Saxony Wa-
ter Management, Coastal Defence and Nature Conservation
Agency (NLWKN). Due to the large spans of time between
the irregular samplings it was impossible to examine nitrate
on a daily basis. Since no dependence between nitrate con-
centration and discharge value was found, measured nitrate
concentration values were simply interpolated linearly and
converted into monthly nitrate load values.

2.2 Interpolation methods

Four established spatial interpolation methods were selected
for this study. The two simple methods of nearest neighbour
(abbr. NN) and inverse distance weighting (IDW), as well as
the more sophisticated methods ordinary kriging (OK) and
kriging with external drift (KED). Let{z(ui),i = 1,...,n} be
the set of a measured climate variable atn locationsui . The
four interpolation methods are used to estimate the climate
variables at unsampled locationsu.

2.2.1 Nearest neighbour (NN)

The simplest approach for this task is the Thiessen polygon
method. Each unsampled locationu is assigned the value of
the nearest observationui′ .

zNN(u) = z(ui′) with |u−ui′ | < |u−ui |∀i 6= i′ (1)

This method produces unrealistic maps with sharp bound-
aries between polygons of equal value, but preserves the vari-
ance of the observed data.

2.2.2 Inverse distance weighting (IDW)

To avoid sudden jumps in values between neighbouring loca-
tions, the variablez can be estimated taking several surround-
ing observations into account. The estimation is a weighted
linear combination, with the weightsλi being inversely pro-
portional to the square distance between sampled locationui

and the point of estimationu:

zIDW (u) =
1

n(u)∑
i=1

λi (u)

n(u)∑
i=1

λi (u)z(ui)

with

λi (u) =
1

|u−ui |
2

(2)

2.2.3 Ordinary kriging (OK)

Kriging techniques are generalized least-squares regression
algorithms. Kriging considers the spatial variability based on
the semivariogram. The experimental semivariogramγ̂ (h)

can be calculated for every time step, but an average exper-
imental semivariogram over all time steps has been found
to be sufficient (Haberlandt, 2007). The average semivar-
iogram is obtained by weighting the daily semivariograms
with the variance for each day. Then a theoretical semivar-
iogram model is fitted to the average experimental semivar-
iogram. Different theoretical semivariograms were used for
different climate data, with the spherical semivariogram used
the most.

When the theoretical semivariogram is fitted, it is used
to determine weightsλOK

i (u) in a way to ensure unbiased-
ness of the estimator,E{ZOK(u)−Z(u)} = 0, and to min-
imize the estimation variance, Var{ZOK(u)−Z(u)}. Like
with IDW, these weights are needed to estimate the unknown
value at an unsampled locationu as a linear combination of
neighbouring observations:

zOK(u) =

n(u)∑
i=1

λOK
i (u)z(ui) (3)

2.2.4 Kriging with external drift (KED)

While the three former methods are univariate, the fourth
method KED is bivariate and uses secondary information to
interpolate the climate data. Additionally to the spatial de-
pendence of a variable, the linear relation to another variable
can be processed. The basic assumption is that the expected
value of the target variableZ(u) is a linear function of an
additional variableY (u):

E [Z(u)|Y (u) ] = a+b ·Y (u) (4)

The KED estimate is the same as for OK (see Eq.3), but the
weights are determined as the solution of a system of linear
equations (the kriging system) under the employ of the sec-
ondary informationy(u). For further details the reader is re-
ferred to geostatistical textbooks (e.g. Isaaks and Srivastava,
1989; Goovaerts, 1997).

2.2.5 Interpolation software

The six climate variables were interpolated using the pro-
gram SAINT (Haberlandt, unpublished), which allows the
user to chose from several interpolation methods, including
the four selected NN, IDW, OK, and KED. In addition to
interpolation, SAINT also allows to compare the prediction
quality of the methods by crossvalidation. Interpolation was
done over the whole Aller river catchment on a grid with
900×900 m2 cell size (10×10 cells of the SRTM DEM). The
program interpolates one time series for every cell, and sub-
sequently aggregates all the cells within a given subbasin to
a mean areal time series for the subbasin. Thus, for every
method, the spatial interpolation returns one time series for
each of the 25 subbasins. This procedure yielded four sets of
equally interpolated climate data, one for each interpolation
method.
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Table 1. SWAT Parameters used for automated calibration.

Number Variable Description Min Max

1 CN2∗∗ Curve Number 25 90
2, 3, 4 ALPHA BF∗

L,G,R Base flow recession constant 0 1
5, 6, 7 GWDELAY∗

L,G,R Delay in percolation to groundwater 0 500
8, 9, 10 GWREVAP∗

L,G,R Groundwater revap coefficient 0.02 0.2
11 SFTMP Snow fall temperature –3 3
12 SMTMP Snow melt temperature –3 5
13 ESCO Soil evaporation compensation factor 0 1
14 EPCO Plant uptake compensation factor 0 1
15 OV N∗∗ Manning’s n for overland flow 0.01 30
16 CANMX∗∗ Maximum canopy storage 0 10
17 HRU SLP∗∗ Average slope steepness of HRU 0 2
18 N UPDIS Nitrogen uptake distribution parameter 0 30
19 NPERCO Nitrate percolation coefficient 0.01 1
20 HLIFE NGW Nitrate half life in groundwater 0 200

∗ The study area was divided into three hydrological landscapes for groundwater, R: from spring to gauge Reckershausen, G: from Reckers-
hausen to G̈ottingen, L: from G̈ottingen to Leineturm.
∗∗ Variable is HRU-specific, but all HRUs were calibrated at the same time keeping the ratio to each other constant, thus it represents only a
single degree of freedom during calibration.

For OK and KED semivariograms were calculated for each
climate variable with a FORTRAN program based on the
Geostatistical Software Library (GSLIB, Deutsch and Jour-
nel, 1992) using all available stations during the time period
from 1960 to 2006. Interpolation was then carried out em-
ploying those semivariograms. Since many climate variables
correlate with terrain elevation, this was taken as secondary
information for KED.

2.3 The SWAT model

In this study the influence of the different interpolation me-
thods on modeling results of the Soil and Water Assessment
Tool (Neitsch et al., 2005) is examined. The SWAT model is
a semi-distributed, process-oriented model capable of simu-
lating runoff, nutrient and other agricultural chemicals dy-
namics as well as sediment yield in large complex water-
sheds with varying soils, land use, and management condi-
tions. The simulated water balance comprises interception,
evapotranspiration, snow melt, surface runoff, infiltration,
soil percolation, lateral flow, groundwater flow, and river
routing. Evapotranspiration is calculated here after Penman-
Monteith, snow melt with the degree day method, infiltration
based on the SCS curve number method, runoff transforma-
tion using a surface runoff lag method and flood routing is
calculated with the variable storage method. Simulations are
carried out on the basis of hydrotopes (Hydrologic Response
Units, HRUs), which are characterized by unique combina-
tions of land use, soil, and topography in each subbasin. Cal-
culated flows are aggregated at the subbasin outlet and routed
through the stream network.

To facilitate the use of GIS-based data for model setup,
the ArcSWAT interface (Winchell et al., 2008) has been cre-
ated to link the SWAT model and ArcGIS 9. For this study
ArcGIS 9.2 and ArcSWAT 2.0.0 were employed, which in-
cludes the SWAT model in its 2005 version.

Altogether 20 parameters were used for automated calibra-
tion using the PEST program (Doherty, 2004) for strategies I
and II, as described below. Seventeen were responsible for
calibration of the hydrology, while the remaining three go-
verned the nitrate calibration (see Table 1). Modeling time
period was from 1979 till 2005. The first two years were
taken as warm-up period for the model. For discharge, cal-
ibration was from 1981 to 1986, validation from 1987 to
1991. For nitrate, since only monthly values were available,
calibration was from 1981 to 1995 and validation from 1996
to 2005.

2.4 Three strategies to evaluate the influence

Three strategies were developed to examine the influence of
the four different interpolation methods on runoff and nitrate
simulation results:

Strategy I: in this simple approach, the SWAT model was
calibrated only one time, using PEST and one selected set
of interpolated climate data from mixed interpolation me-
thods. For each climate variable for the mixed set the best
performing interpolation method during cross-validation was
selected. Then, all four interpolation climate data sets were
subsequently applied to the calibrated model and the mo-
deling results were compared running the SWAT model for
both the calibration and the validation periods. The climate

Adv. Geosci., 27, 91–98, 2010 www.adv-geosci.net/27/91/2010/



S. van der Heijden and U. Haberlandt: Influence of climate interpolation methods on SWAT simulations 95

data for calibration was selected from the interpolated data
sets via crossvalidation. Data resulting from the method
which performed best in crossvalidation considering correla-
tion and RMSE were chosen for each climate variable. This
was KED for temperature, humidity, and wind speed, OK for
precipitation, and IDW for sunshine duration. One possible
problem with this strategy is that it might be biased towards
one or more of those interpolation methods used for calibra-
tion.

Strategy II: to circumvent a biased calibration the sec-
ond approach was designed as fourfold calibration of the
model, separately with each of the four interpolated climate
data sets. Again automated calibration with the PEST tool
was employed. Results of those four calibrated models were
compared, again for simulations using both the calibration
and validation periods. Individual calibration however might
cover the differences in modeling results arising from the dif-
ferent interpolation methods.

Strategy III: to overcome the possible problem of compen-
sation of poor climate data by separate calibration the third
strategy was developed. No calibration is necessary for this
approach. Of the 20 model parameters used for calibration in
strategies I and II, 1000 random parameter sets were gener-
ated, uniformly distributed between the minimum and max-
imum values allowed by SWAT. These 1000 parameter sets
were applied to each of the four interpolated climate data
sets. As evaluation the number of all realisations above a
selected threshold in Nash-Sutcliffe-Efficiency (determined
over a period of 10 years from 1981 to 1990) for both dis-
charge and nitrate load was counted for each interpolation
method.

3 Results and discussion

In Table 2 some exemplary results of the spatial interpolation
are shown. The numbers represent average long-term val-
ues of precipitation sum and maximum daily temperature for
the Upper Leine catchment. The presented numbers already
show clearly the variation in the different interpolation me-
thods, while the differences can be much more pronounced
for smaller regions or on individual days.

Simulation results were generally good with the calibrated
SWAT model. Figure 2 exemplarily shows two graphs, one
for daily discharge and one for monthly nitrate load at gauge
Leineturm.

3.1 Strategy I

Strategy I did not show any significant differences between
interpolation methods, neither for discharge nor for nitrate
simulation. Figure 3 shows results for gauges Leineturm
and Reckershausen, the other gauges are similar. Nash-
Sutcliffe efficiency (NSE) is higher for the discharge and ni-
trate gauges with larger catchment areas, as it is usually the

Table 2. Exemplary results of the spatial interpolation of the climate
variables.

Climate variable∗ KED∗∗ OK∗∗ IDW∗∗ NN∗∗

PCP (summer) [mm] 385.11 381.04 379.64 379.19
PCP (winter) [mm] 341.34 337.20 334.50 333.95
PCP (year) [mm] 726.45 718.25 714.13 713.14

TMAX (summer) [◦C] 18.67 19.07 19.25 19.32
TMAX (winter) [◦C] 5.91 6.22 6.36 6.42
TMAX (year) [◦C] 12.34 12.69 12.85 12.92

∗ Long-term average sum of precipitation (PCP) and long-term
average maximum daily temperature (TMAX) for May–October
(summer), November–April (winter) and whole year, averaged from
1960 to 2006 over the Upper Leine catchment.
∗∗ Four interpolation methods were compared: kriging with exter-
nal drift (KED), ordinary kriging (OK), inverse distance weighting
(IDW) and nearest neighbour (NN).

case, but there is no conclusive difference between interpo-
lation methods at each gauge. This is surprising, since it was
expected that this approach would perform better for inter-
polated climate data used for calibration. A reason might
be the random influence of automated calibration. Not only
the choice of the climate data set for calibration, but also the
PEST optimization start parameters have a strong effect on
the final calibrated model, and thus the performance of the
modeling results. This means that strategy I is not suitable
to detect any differences in modeling results arising from the
interpolation method for the climate data.

3.2 Strategy II

As strategy I before, the second approach neither showed
any significant differences between interpolation methods
(Fig. 4, gauges not shown are similar). Again NSE for
both discharge and nitrate varies between gauges, but not be-
tween interpolation methods. Although the influence of a
biased calibration has been removed, this outcome is plau-
sible, since separate calibration might compensate for dif-
ferences resulting from the climate data sets. Furthermore,
the influence of the PEST optimization start parameters is
very strong, as it turned out in a follow-up investigation.
Strategy II was carried out several times using different PEST
start parameters, and each time the result was different, and
no realization clearly favoured any of the interpolation me-
thods in modeling results.

3.3 Strategy III

The results of strategy III are presented in Fig. 5 (threshold
value 0.5, other threshold values show similar results). As the
other approaches before, there is no visible influence of the
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Fig. 2. Simulated and observed time series of daily discharge (left) and monthly nitrate load (right) at gauge Leineturm.
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Fig. 3. Results of strategy I, NSE for discharge (left) and nitrate load (right). Gauges Leineturm (Leine) and Reckershausen (Reck) shown
for calibration (cal.) and validation (val.) periods.
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Fig. 4. Results of strategy II, NSE for discharge (left) and nitrate load (right). Gauges Leineturm (Leine) and Reckershausen (Reck) shown
for calibration (cal.) and validation (val.) periods.
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interpolation method on discharge simulation. Although this
strategy is not biased towards any method and no calibration
is carried out, all discharge gauges show a similar number
of “good” realizations with a Nash-Sutcliffe efficiency above
the chosen threshold for each method. In agreement with
the previous methods, higher numbers of good realizations
are found for gauges with larger catchment areas. This holds
true for all tested threshold values.

Nitrate simulation on the other hand shows an extreme and
clear influence of the interpolation method. All three gauges
consistently reveal a rising number of good realizations from
the simplest to the most sophisticated interpolation method,
with KED clearly performing best, often with about twice as
much good realizations than the second-best method. This
again holds true for all tested threshold values.

4 Conclusions and discussions

Although strategies I and II did not show any significant dif-
ference between interpolation methods, strategy III proves
that there is a strong influence at least on nitrate simula-
tion. KED clearly outperforms all other evaluated interpo-
lation methods, and a well-defined rank order from the sim-
plest to the most sophisticated method is visible. The ques-
tion arises, why this only shows in the modeling results for
nitrate, and not for discharge. Most likely the measuring
network density plays a major role in this. Previous stud-
ies proved an influence of the network density on modeling
results (e.g. B́ardossy and Das, 2008). The main driving
force for discharge is precipitation, while nitrate dynamics
strongly depend on plant growth, with temperature as its
main driving force. The precipitation measuring network
for the Aller river catchment has a four times higher den-
sity than the measuring network for the other climate vari-
ables, which even raises to six times when taking the average
number of “non-missing” stations into account. It is self-
evident that the higher the network density, the smaller the
differences between interpolation methods. Further analy-
sis showed that indeed temperature makes up for the largest
part of the differences in performance between NN and KED
in strategy III. Since temperature also is the climate vari-
able benefitting most from more sophisticated interpolation
methods, especially KED with elevation as secondary infor-
mation, as shown by cross-validation, the large difference
in performance between interpolation methods regarding ni-
trate simulation in strategy III can be explained. To test the
influence of measuring network density, the analysis could be
extended considering different densities of the precipitation
network.

One major problem with the first two strategies is the ran-
dom influence of the automated calibration. The optimiza-
tion starting parameters for PEST have a strong influence
on the final calibrated model parameters, which of course
influences which interpolated climate data performs best.

Even when one climate data set is used for calibration, as
in strategy II, it does in no way guarantee that this data set
performs best with the calibrated model. Subsequent tri-
als revealed that different optimization starting parameters
yield totally different calibrated model parameters and dif-
ferent rank orders of performance of the interpolation me-
thods. These findings allow two major conclusions: firstly,
any strategies involving automated calibration in the way
presented in this paper (one random set of optimization start-
ing parameters, minimum and maximum parameter values
as allowed by the model) are not suitable to evaluate the per-
formance of interpolation methods. Even a combination of
strategies I and II did not give any other results (fourfold cal-
ibration with each climate data set, application of all four
data sets to all four calibrated models in turn). Secondly,
if for a model application a single automated calibration as
shown is used, it is very unlikely that the modeler will get the
best out of his climate input data, even when testing several
interpolation methods.

Automated calibration could become suitable for eva-
luation of the interpolation methods with some alterations
and improvements of the evaluation strategies. For one, the
permitted parameter space could be narrowed down to phys-
ically meaningful limits for the examined study area instead
of employing the maximum limits set by the model. Further-
more, a Monte Carlo-like automated calibration with varying
optimization starting parameters seems necessary to elim-
inate the random influence of the starting parameters. A
Monte Carlo-like automated calibration might also reveal
other aspects of the influence of the interpolation methods,
e.g. if a more robust parameter calibration would be pos-
sible using climate data from more sophisticated interpola-
tion methods. Other aspects for future research are to ana-
lyze how well the findings from this study are transferable to
other investigation areas and/or other models. Also, if dif-
ferences arise, it is worthwhile to invesigate which climate
variables contribute most to the differences, when interpo-
lated with different methods. This may lead to conclusions
about whether one interpolation method is more suitable for
a specific climate variable than another, with different me-
thods performing best for different variables. A useful fur-
ther study would be to establish a guideline for modelers how
to interpolate the climate input data for their models in order
to receive the best performance and the most robust model
parameters, while minimizing the amount of time needed for
calibration.
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