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Abstract. We present a Stochastic Space Random Cascade
(SSRC) approach to downscale precipitation from a Global
Climate Model (hereon,GCMs) for an Italian Alpine water-
shed, the Oglio river (1440 km2). The SSRC model is lo-
cally tuned upon Oglio river for spatial downscaling (approx.
2 km) of daily precipitation from the NCAR Parallel Climate
Model. We use a 10 years (1990–1999) series of observed
daily precipitation data from 25 rain gages. Scale Recur-
sive Estimation coupled with Expectation Maximization al-
gorithm is used for model estimation. Seasonal parameters
of the multiplicative cascade are accommodated by statis-
tical distributions conditioned upon climatic forcing, based
on regression analysis. The main advantage of the SSRC is
to reproduce spatial clustering, intermittency, self-similarity
of precipitation fields and their spatial correlation structure,
with low computational burden.

1 Introduction

Global Climate Models GCMs deliver meteorological vari-
ables with a fine resolution in time, but usually for a coarse
spatial grid (50–500 km), and they usually reproduce poorly
the statistics of historical records at the spatial scales of inter-
est in hydrology. So, a proper tailoring is required for local
use, before any accurate guess about hydrologic cycle can be
ventured (e.g. Lammering and Dwyer, 2000; Burlando and
Rosso, 1991, 2002a). Downscaling in space of outputs of
back calculations from climatic models requires appropriate
data assimilation schemes (e.g. Bocchiola, 2007; Kang and
Ramirez, 2007). A class of methods that accounts for in-
termittency and self-similarity properties of precipitation is
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statistical downscaling via Stochastic Space Random Cas-
cades (SSRC) (Tessier et al., 1993; Over and Gupta, 1994,
1996; Veneziano and Langousis, 2005, 2009; Veneziano et
al., 2006). A considerable effort has been recently devoted
towards multi scale data assimilation schemes using scale re-
cursive estimation SRE based upon the SSRC theory (Primus
et al., 2001; Tustison et al., 2003; Bocchiola and Rosso,
2006; Gupta et al., 2006; Bocchiola, 2007).

This paper addresses downscaling of precipitation, at res-
olution of approximately 2×2 km2, for the 1440 km2 Oglio
river basin (closed at Sarnico) in the Retiche Italian Alps
(Fig. 1). The study is aimed to evaluate scenarios of future
water resources within the Oglio river watershed, in a win-
dow of 50 years or so. We previously identified (see Grop-
pelli and Pengo,master thesis) the GCM that best reproduces
precipitation in the study area, i.e. the NCAR Parallel Cli-
mate Model (henceforth NCARPCM) (Washington et al.,
2000; Meehl et al., 2000). This provides the most accurate
estimates of mean precipitation in the area, and it is the best
candidate for downscaling in the region. For model calibra-
tion, we use a 10-year (1990-1999) series of observed daily
precipitation data from 25 rain gages within the watershed.

2 Donwscaling technique

2.1 Daily precipitation bias

Visual analysis of daily precipitation series from the
NCAR PCM (RGCM) against those observed at ground level
(average areal precipitation using the 25 raingauges within
the Oglio watershed, namelyRGAO) indicates considerably
different patterns, concerning both rain rate and intermit-
tency (i.e. the sequence of dry and wet spells). Therefore, one
needs to correctRGCM to obtain daily precipitation consistent
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Table 1. BiasGAO parameters. Estimated parameter c and related average spatial intermittence (FWA) and 1 

Regression Parameters p/RGAO. Symbols are explained in Sections 2 and 3. All significant results (α = 0.05). 2 

Season 

BGAO 

[.] 

σW0
2 

[.] 

FWAG  

 [%] 

FWAS  

[%] 

c 

[.] 

k 

[.] 

Rmax 

[mmd
-1

] 

p-value 

[.] 

Winter 1.458 0.27 60% 59% 0.5 0.150 0.384 <10
-5

 

Spring 1.329 0.20 48% 47% 1.4 0.140 0.484 <10
-5

 

Summer 1.669 0.45 48% 48% 1.0 0.137 0.461 <10
-5

 

Autumn 2.005 0.38 47% 47% 1.3 0.111 0.502 <10
-5

 

 3 

Figure 1: The study area: Oglio river basin in the Retiche Italian Alps. Clear cells denote the NCAR_PCM grid 4 

and the light dots are the raingauge network in the Oglio river basin. 5 

 6 

Fig. 1. The study area: Oglio river basin in the Retiche Italian Alps. Clear cells denote the NCARPCM grid and the light dots are the
raingauge network in the Oglio river basin.

with RGAO. Here we do so using a random multiplicative
process that accounts for intermittence, termed BiasGAO

BiasGAO = RGAO
/
RGCM = BGAOB0W0

P(B0 = p−1
0 ) = p0

P(B0 = 0) = 1−p0

}
E [B0] = p−1

0 p0+0 (1−p0) = 1

W0 = e
(
w0−σ2

w0

/
2
)}

E[W0] = 1

w0 = N
(
0,σ 2

w0

)
(1)

whereBGAO, p0, andσ 2
w0 are model parameters to be es-

timated from data.BGAO is a constant term that forces the
average daily value ofRGAO to match its sample value, be-
cause of GCM underestimation of rainfall during wet spells.
The termB0 is a β model generator (see Over and Gupta,
1994). It is the probability that the rain rateRGAO for a given
day is zero, conditioned uponRGCM being positive, and it
is modelled here by a binomial distribution. The termW0
is a ”strictly positive” generator. It is used to add a proper
amount of variability to precipitation during wet spells. This
approach is used for consistency with the SSRC approach, as
described further on.

2.2 Stochastic space random cascade

The spatial variability of rainrates is here modelled using a
homogeneous SSRC (Schertzer and Lovejoy, 1987; Gupta
and Waymire, 1993; Over and Gupta, 1994, 1996; Deidda,
2000; Veneziano and Langousis, 2005; Veneziano et al.,
2006).

Spatial rainfall distribution is modelled as a branching tree
structure (e.g. Bocchiola, 2007; Groppelli et al., 2010). Each
layer in the tree represents a lattice, where the size of the
cells (or nodes) is coincident with the resolution (or scale)
associated to the samples of the rainfall field obtained with
some measurement device(s), or someway estimated.

The node at the coarsest resolution is called ”root” node,
while the nodes at the finest resolution are called ”leaves”.
NamedR0 the average rainfall rate at the synoptic scale,
the dimensionless rainfall rate in any cell, indexed byi, at

a generic scale,s, namelyXi
s = Ri

s/R0 is Xi
s = X0

s∏
j=1

Y i
j ,

whereX0 is X at a root node and the operatorY is a ”gener-
ator” of the cascade at a given scale, with statisticsE[Y i

s ] =

1 and. V ar[Y i
s ] = σ 2

Ys . Rainfall process displays spatial

Adv. Geosci., 26, 39–44, 2010 www.adv-geosci.net/26/39/2010/



B. Groppelli et al.: Precipitation downscaling using random cascades: a case study in Italy 41

intermittence, this meaning that the process has a finite prob-
ability mass at zero [Kedem and Chiu, 1987; Kumar and
Foufoula-Georgiou, 1994]. Based upon Over and Gupta
(1996) we modelled the cascade generator here as the prod-
uct of two independent generators. This is given by:

Y i
s = Bi

sW
i
s (2)

whereWs is a “strictly positive” generator, modelling the
rainfall process for the rainy areas, andBs is aβ model gen-
erator, i.e. the probability that rain rate in a cell at scale s is
zero, conditioned on its parent being positive

P(Bi
s = 0) = 1−b−β

= 1−p and P (B i
s = bβ) = b−β

= p (3)

E
[
Bi

s

]
= 0

(
1−b−β

)
+ bβ b−β

= 1

whereb is the branching number andβ is a parameter esti-
mated from the data set (as in Over and Gupta, 1994). In the
rainy areas, one also requires to model the pdf of W. This is
accommodated here using a scaled lognormal variable (see
e.g. Marsan et al., 1996; Over and Gupta, 1994) asW i

s =

e
(
wi

s−σ2
ws /2

)
andE

[
W i

s

]
= 1 with wi

s −σ 2
ws /2= LogW i

s and
wi

s ≈ N(0;σ 2
ws).

3 Model estimation

To estimateBGAO and SSRC model parameters we used an
analogous approach.BGAO in Eq. (1) was estimated as the
mean value of the ratio ofRGAO andRGCM for the period
(1990–1999). The estimation ofp0 is directly performed us-
ing the observed probability of non null rainfall upon gauges
conditioned upon GCM’s non null rainfall, and one can use
this estimated value for simulation. We did this seasonally,
because a preliminary analysis showed that the average dura-
tion of dry spells depends upon season. The variance ofW0,
namelyσ 2

w0, was also estimated seasonally, using a maxi-
mum likelihood approach, performed using a modified ver-
sion of the SRE-EM algorithm in time [e.g. Bocchiola and
Rosso, 2006]. The estimated parameter values are reported
in Table 1.

The SSRC model is usually tested and tuned against spa-
tially distributed remotely sensed precipitation estimates, e.g.
from ground radar and/or satellites (e.g. Over and Gupta,
1994; Bocchiola, 2007). However, long and accurate series
of observed precipitations are seldom available from remote
sensing devices, and we are not aware of similar data bases
for the catchment of interest. Here, the SRE-EM approach is
used for SSRC model estimation from sparse rain gage data,
i.e. to evaluate process noiseσ 2

ws (Groppelli et al., 2010).
We allow estimation ofσ 2

ws to vary without any regular
structure in scales, so making no assumptions concerning the
scale structure of precipitation (e.g. by using regular scale in-
variance, either bounded or unbounded, as e.g. in Tustison et

al., 2003). Gupta et al. (2006), and Bocchiola (2007) demon-
strated that so doing better process noise estimates (i.e.σ 2

ws),
are obtained. Consistently, downscaling was carried out us-
ing unconstrained weights.

The estimation of beta generatorB is generally based upon
calculation of scaling of sample moments of order zero at dif-
ferent resolution is space (e.g. Over and Gupta, 1994). Us-
ing of sparse gauge networks does not allow direct evalua-
tion of B, because of scarce spatial representativeness of rain
gauges. To overcome this issue we proceeded as follows.
For every wet day, we used SRE-EM to produce an inter-
polated (honouring observed data) rainfall fields at 2×2 km2

from the rain gauge observations. Then, we applied a thresh-
old of precipitation, used to set to zero low estimated pre-
cipitation (see e.g. Perica and Foufoula-Georgiou, 1996). In
this way, areas where low precipitation is attained are con-
sidered as dry, obtaining an intermittent rainfall field. The
threshold is dynamically evaluated for each day and depends
upon the least observed rainfall intensity for that dayRGmin,
asRTresh= e(ln[RGmin]−c). The critical value ofc is selected
so as to fulfil the criteria of average spatial intermittency as
observed, and changes with season according to our find-
ings. In Table 1 we report the obtained values ofc and the
corresponding spatial intermittence, expressed as the frac-
tion of area actually covered with rainfall, or Fractional Wet-
ted Area, FWAG and FWAS (from Gauges and Simulated).
It is important to notice that spatial intermittence, or FWA
changes from storm to storm, depending on the spatial dis-
tribution of rainfall. We used the so obtained zero field to
estimate the beta generator parameter (i.e.p in Eq. 3) for
each storm.

3.1 Dependence of cascade parameters upon climate
forcing

Following Over and Gupta (1994), we tentatively linked
FWA, given by parameterp, to external scale forcing, as ex-
pressed by average precipitation in the area, approximated
here byRGA. According to Over and Gupta (1994), we use
a functional dependence, 1−p /

(
1−1b2

)
= (RGAO/ Rmax)

k,
whereRmax and k are empirically estimated parameters. The
so estimated seasonal parameters are reported in Table 1. The
σ 2

ws parameters displayed a limited storm to storm variabil-
ity, particularly at the finest scale, and their scatter plot at
each scale could be accommodated using seasonally valid
LN distributions (not shown for shortness).

4 Model validation and results

We validate the model by downscaling of GCM’s control
run for the period 1990–1999. We first validate BiasGAO
by i) comparing sample fraction of wet days in the simu-
lated seriesRSA, p0S , against its sample value fromRGA

series,p0 and ii) comparing the second order statistics of
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Table 1. BiasGAO parameters. Estimated parameterc and related average spatial intermittence (FWA) and Regression Parametersp/RGAO.
Symbols are explained in Sects. 2 and 3. All significant results (α = 0.05).

Season BGAO
[.]

σ2
W0

[.]
FWAG

[%]
FWAS

[%]
c
[.]

k
[.]

Rmax
[mmd−1]

p-value
[.]

Winter 1.458 0.27 60% 59% 0.5 0.150 0.384 < 10−5

Spring 1.329 0.20 48% 47% 1.4 0.140 0.484 < 10−5

Summer 1.669 0.45 48% 48% 1.0 0.137 0.461 < 10−5

Autumn 2.005 0.38 47% 47% 1.3 0.111 0.502 < 10−5
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Figure 2. Validation Statistics back-casting. Symbols are explained in Sections 3 and 4. 1 
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Figure 2. Validation Statistics back-casting. Symbols are explained in Sections 3 and 4. 1 
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 3 
Fig. 2. Validation Statistics back-casting. Symbols are explained in
Sects. 3 and 4.

estimated daily area rainfallRSA = RGCM·BiasGAO against
those ofRGAO. The fraction of wet daysp0(i) is well de-
scribed, and its simulated yearly average value is E[p0S ] =
38.4%, against E[p0]= 36.7%, withp-value = 0.45. Simi-
larly good agreement was found seasonally, as illustrated in
Fig. 2. This indicates suitability of the model to correctly de-
pict daily wet-dry spells sequence. Then,(ii) we investigate
the relation between (year round) average of the daily simu-
lated rainfallRSA, E[RSA] = 3.52 mmd−1 (with Dev.St[RSA]
= 7.02 mm d−1) and the observed valueRGAO, E[RGAO ]=
3.47 mm d−1 (Dev.St [RGAO] = 6.81 mm d−1). Good agree-
ment is therefore seen (p-value = 0.61 andp-value = 0.03,
for mean and standard deviation respectively) and similar

good fitting is observed in each season for the mean val-
ues, illustrated in Fig. 2. More critical behaviour is found
when dealing with seasonal standard deviation. Albeit nu-
merical values of simulated and observed standard deviations
are somewhat close,p-values for Fisher’s F test are low, thus
indicating improper variances. However, this may be due
to somewhat high number of seasonal daily data used here
(circa 900 values/season), making goodness of fit test very
severe.

Then, we validated the SSRC byi) verifying the agree-
ment of the simulated FWAS , with its sample value from the
observed series FWAG, both upon the catchment as a whole,
and upon each single rain gauge, andii ) comparing the sec-
ond order statistics of simulated yearly cumulated precipita-
tion and daily precipitation upon single rain gaugesi, RScumi,
RSi with the observed series ofRGcumi andRGi . The model
generally does well in preserving spatial intermittency, and
the yearly average simulated wetted area at the finer scale is
E[FWAS ] = 0.51 against E[FWAG] = 0.50 (p-value = 0.65).
Generally acceptable agreement is observed, also seasonally
(not reported for the sake of shortness).

Second order (year round) statistics of the simulated daily
precipitation upon single rain gaugesRSi , are illustrated in
Fig. 3, together their observed counter part,RGi . We report
here only stations featuring a complete data base for the ten
years in study, for robustness. Concerning daily values, the
mean values of simulated daily precipitation,RSi are rea-
sonably correct. Again here, comparison ofRSi againstRGi

shows some issues in term of standard deviation, with sim-
ulated values that are somewhat overestimated. However,
the high number of considered daily values (i.e. 3652 val-
ues) may result again here into considerably lowp-values.
Further, at station standard deviation was seen to be consid-
erably affected by few high precipitation events, as obtained
by SSRC. Concerning yearly cumulated precipitationRScumi,
comparison againstRGcumi, displays satisfactory results for
both mean and standard deviation (not shown here for short-
ness).

In Fig. 4 we show a sample snapshots of simulated historic
precipitation (namely 14 March 1996), illustrating the con-
cept of FWA and precipitation clustering as reproduced by
use of our approach. The event has low spatial intermittency.
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Figure 3. Back-casting station wise comparison of second order moments of daily precipitation (Mean and 1 

St.Dev). All stations feature 10 years of data.  Symbols are explained in Sections 3 and 4.  2 
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Fig. 3. Back-casting station wise comparison of second order mo-
ments of daily precipitation (Mean and St.Dev). All stations feature
10 years of data. Symbols are explained in Sections 3 and 4.

Notice the capability of the model to reproduce considerably
clustered precipitation fields.

5 Conclusions and future developments

The proposed methodology allows downscaling of precipita-
tion from a GCM, under the hypothesis that it can be well
depicted using a random cascade. The approach given by
BIASGAO plus SSRC seems capable of reproducing reason-
ably well the single site precipitation field in the area. The
daily simulated values display a somewhat enhanced vari-
ability than that observed in historic precipitation, but yet it
shows a good interpretation of spatial intermittency and av-
erage daily rainfall. Notice further that such increased vari-
ance, albeit theoretically remarkable may be in practice of
little importance. In facts, it is related to few randomly (i.e.
according to a lognormal distribution) high values of precip-
itation that do occur within few cells during few events, be-
ing in practice very unlikely to change either the main char-
acteristics of the daily rainfall events, or their hydrological
consequences. In the future, we will carry out further stud-
ies to highlight the cause and significance of such increased
variability. The methodology requires the estimation of the

 11 

Figure 4. Spatial (2x2 km
2
) daily precipitation for one event from the back-casting rainfall series using SSRC. 14 1 

March 1996 - Event with low spatial intermittency (i.e. high value of p). 2 

3 Fig. 4. Spatial (2×2 km2) daily precipitation for one event from the
back-casting rainfall series using SSRC. 14 March 1996 – Event
with low spatial intermittency (i.e. high value ofp).

cascade process parameters, which is here carried out using
a maximum likelihood estimation method based upon on a
multiscale support. Next developments will include use of
the downscaled precipitation to provide future hydrological
scenarios for the Oglio river.
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Kang, B. and Raḿırez, J.: Response of Streamflow to Weather Vari-
ability under Climate Change in the Colorado Rockies, J. Hydrol.
Eng., doi:10.1061/ASCE1084-06992007, 12, 63 pp., 2007.

Kedem, B. and Chiu, L. S.: Are rain rate process self-similar?, Wa-
ter. Resour. Res., 23(10), 1816–1818, 1987.

Kumar, P. and Foufoula Georgiou, E.: Characterizing multiscale
variability of zero intermittency in spatial rainfall, J. Appl. Me-
teorol., 33, 1516–1525, 1994.

Lammering, B. and Dwyer, I.: Improvement of water balance in
land surface schemes by random cascade disaggregation of rain-
fall, Int. J. Climatol., 20, 681–695, 2000.

Marsan, D., Schertzer, D., and Lovejoy, S.: Causal space-time mul-
tifractal processes: predictability and forecasting of rain fields. J.
Geophys. Res., 101, 26333–26346, 1996.

Meehl, G. A., Collins, W. D., Boville, B. A., Kiehl, J. T., Wigley, T.
M. L., and Arblaster, J. M.: Response of the NCAR Climate Sys-
tem Model to Increased CO2 and the Role of Physical Processes,
J. Climate, 13, 1879–1898, 2000.

Over, T. M. and Gupta, V. K.: Statistical analysis of mesoscale rain-
fall: dependence of a random cascade generator on large scale
forcing, J. Appl. Meteorol., 33, 1526–1542, 1994

Over, T. M. and Gupta, V. K.: A space-time theory of mesoscale
rainfall using random cascade, J. Geophys. Res., 101, 26319–
26331, 1996.

Perica, S. and Foufoula-Georgiou, E.: Model for multiscale dis-
aggregation of spatial rainfall based on coupling meteorologi-
cal and scaling descriptions. J. Geophys. Res., 101(21), 263647–
26361, 1996.

Primus, I., Mclaughlin, D., and Entekhabi, D.: Scale-recursive As-
similation of Precipitation Data, Adv. Water Resour., 24, 941–
953, 2001.

Tessier, Y., Lovejoy, S. and Schertzer, D.: Universal multifractals:
theory and observations for rain and clouds, J. Appl. Meteorol.,
223–250, doi:10.1175/1520-0450, 1993.

Tustison, B., Foufoula-Georgiou, E., and Harris, D.: Scale-
recursive estimation for multisensor quantitative precipitation
forecast verification: a preliminary assessment, J. Geophys. Res.,
10(D8), 8377, doi:10.1029/2001JD001073, 2003.

Veneziano, D. and Langousis A.: The Areal Reduction Fac-
tor: a Multifractal Analysis, Water Resour. Res., 41, W07008,
doi:10.1029/2004WR003765, 2005.

Veneziano, D., Langousis, A., andFurcolo, P.: Multifractality and
Rainfall Extremes: A Review, Water Resour. Res., 42, W06D15,
doi:10.1029/2005WR004716, 2006.

Veneziano, D., Langousis, A.: Scaling and Fractals in Hydrology,
In: Advances in Data-based Approaches for Hydrologic Model-
ing and Forecasting, Edited by: B. Sivakumar, World Scientific,
145 pp. 2009.

Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner Jr.,
A. J., Bettge, T.W., Craig, A. P., Strand Jr., W. G., Arblaster,
J., Wayland, V. B., James, R. and Zhang, Y.: Parallel climate
model (PCM) control and transient simulations, Clim. Dynam.,
16, 755–774, 2000.

Adv. Geosci., 26, 39–44, 2010 www.adv-geosci.net/26/39/2010/


