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Abstract. Geophysical models in general, and atmospheric
models more specifically, are always limited in spatial res-
olutions. Due to this limitation, we face with two different
needs. The first is a need for knowing (or “downscaling”)
more spatial details (e.g., precipitation distribution) than hav-
ing model simulations for practical applications, such as hy-
drological modelling. The second is a need for “parameter-
izing” the subgrid-scale physical processes in order to rep-
resent the feedbacks of these processes on to the resolved
scales (e.g., the convective heating rate).

The present article begins by remarking that it is essen-
tial to consider the downscaling and parametrization as an
“inverse” of each other: downscaling seeks a detail of the
subgrid-scale processes, then the parameterization seeks an
integrated effect of the former into the resolved scales. A
consideration on why those two closely-related operations
are traditionally treated separately, gives insights of the fun-
damental limitations of the current downscalings and param-
eterizations.

The multiresolution analysis (such as those based on
wavelet) provides an important conceptual framework for de-
veloping a unified formulation for the downscaling and pa-
rameterization. In the vocabulary of multiresolution analysis,
these two operations may be considered as types of decom-
pression and compression. A new type of a subgrid-scale
representation scheme, NAM-SCA (nonhydrostatic anelas-
tic model with segmentally-constant approximation), is in-
troduced under this framework.
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1 Introduction

The present contribution intends to provide a particular per-
spective on representation of the subgrid-scale physical pro-
cesses in geophysical modelling. Yano et al. (2005) have
proposed that the subgrid-scale representation problem can
systematically be considered as that of a mode decomposi-
tion. The present article generalizes this proposal by also
including the downscaling within a perspective and also re-
ports the author’s more recent model development along this
line.

Although the present article is written from an author’s at-
mospheric perspective, he believes that it would equally be
applicable to the ocean modellings, and to less extent, hy-
drological modellings. The geophysical system, in general,
can be described by a set of partial differential equations.
The atmosphere and ocean systems share much in common,
adopting a system of equations derived as a certain approxi-
mation of the Navier-Stokes equation.

In standard procedures, these equations are solved numer-
ically by using a discrete distribution of physical variables
in space. For this reason, the original partial equations must
be approximated, so that they are solvable in a discretized
space. The simplest procedure is to approximate spatial par-
tial differentiations by difference over two contiguous points,
or finite differences. Due to a finite resolution in numerical
modelling, physical processes that fall between the two con-
tinuous spatial points are no longer directly available. These
physical processes that are not directly available are called
subgrid-scale physical processes. These subgrid-scale pro-
cesses must be somehow represented in an indirect manner,
because they are otherwise not available. We call this prob-
lem subgrid-scale representation (SSR).
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SSR can be divided into two major parts. The first is the
downscaling (e.g., Marani and Zanetti, 2007), a retrieval of
details of the subgrid-scale processes, such as a spatial rain-
fall distribution of the scales finer than those explicitly re-
solved by a numerical weather forecast model. The second
is the parameterization (cf., Arakawa, 2004), an estimation
of the feedbacks of the subgrid-scale processes onto the re-
solved scales, such as the latent heating rate due to con-
densation of water vapor into liquid water associated with
precipitation processes not spatially resolved by a numerical
model. Note that the current weather forecasting models still
have difficulties in resolving these precipitation processes in
a manner that practical needs are well satisfied.

The present paper begins by making a relatively obvious
point that these two types of SSR constitutes a pair problem
in which the one can conceptually be considered as an “in-
verse” of the other. This point is made in the next section by
presenting SSR in a general manner.

However, the current downscaling and parameterization
schemes are not designed as such a pair operation. Thus, the
two related questions follow: (1) Why the current downscal-
ing and parameterization are not treated as an “inverse” of the
other? (2) Then, how the downscaling and parameterization
can be developed as a pair operation consistently? These two
questions are addressed in Sect. 3 and 4, respectively. Sec-
tion 5 presents a new type of SSR, called NAM-SCA (nonhy-
drostatic anelastic model with segmentally-constant approx-
imation), as a specific application of the proposed principle.
The paper is concluded in Sect. 6.

2 The subgrid-scale representation problem

An equation for any prognostic physical variableϕ (e.g., ve-
locity, temperature, humidity, salinity, soil water) can be ex-
pressed by

∂

∂t
ϕ = −

1

ρ
∇ · ρvϕ + F, (1)

whereρ is the density,v is the velocity, and the last term
F represents all the other physical processes other than the
advection that control the variableϕ, which may be called
“forcing” or “source”.

A geophysical model is, however, usually solvable only
numerically. A finite horizontal grid-box can be conceptu-
ally considered as a basic unit in the numerical computations:
i.e., a model system is presented in terms of the grid-box av-
erages.1 From this perspective, the subgrid-scale processes
are what is going on within each model grid box.

1Strictly speaking, this statement is true only if the numerical
code is written in terms of a finite volume. When a finite differ-
ence scheme is used, grid-box means of physical variables are not
directly available, thus this argument is only conceptually correct.

A version of Eq. (1) averaged over a grid box is used in an
actual numerical implementation:

∂

∂t
ϕ̄ +

1

ρ
∇̄ · ρv̄ϕ̄ = −

1

ρ
∇ · ρv′ϕ′ + F̄ , (2)

where the overbar designates the horizontal mean over the
grid box, the prime indicates the deviation from this mean
(e.g.,ϕ′=ϕ−ϕ̄), and∇̄ is a reminder that this nabla operation
is performed over finite volume elements, or finite-distance
grid points. In this derivation, we have assumed that the
nabla operator∇ is interchangeable with the averaging op-
erator, thus e.g.,∇ϕ̄=∇̄ϕ̄.

The problem of SSR consists of defining the right-hand
side of Eq. (2), which may be split in the two parts: firstly,
subgrid-scale distributionsϕ′ of variables must be defined.
That constitutes the downscaling. Then the feedbacks of
subgrid-scale variabilities, defined by the right-hand side
above, are evaluated by these subgrid-scale variables ob-
tained by downscaling. The second part constitutes the pa-
rameterization.

The evaluation of the grid-box averaged forcingF̄ is gen-
erally more involved than the evaluation of the eddy fluxes
given, as a first term in the right-hand side. Nevertheless,
the main point is the same, that subgrid-scale distributions
ϕ′ of variables must be known before the forcingF̄ can be
evaluated.

Thus, the SSR problem consists of the two steps. First,
the subgrid-scale variability,ϕ′, is evaluated by downscal-
ing. Second, the feedbacks of the subgrid-scale variabilities
on the model-resolved scales (the right-hand side of Eq. 2) is,
then, evaluated by parameterization. In this manner, the two
problems, the downscaling and the parameterization consti-
tute two parts of a single problem.

3 Why the current downscaling and parameterization
do not constitute two parts of a single problem?

As far as the current state of art is concerned, the down-
scaling and the parameterization are never considered as a
pair problem: why? Sociologically speaking, this situation
may be attributed to an almost perfect separation of the two
communities developing the downscaling and the parameter-
ization without any link between them. Lack of communi-
cations also leads to inherent limitations of the current ap-
proaches both in downscaling and parameterization.

The main stream of downscalings (statistical downscaling)
is usually performed in a purely statistical manner, with a fo-
cus on a physical variable of practical interests, more com-
monly the precipitation distribution (cf., Foufoula-Georgiou,
1997). No other physical variables, that are essential in esti-
mating precipitation from a convection parameterization, are
taken into account.

The current state of the art of the parameterization is
equally limited. A particular example to make the point is
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the convection parameterization. A current main stream of
the approach, called mass flux, is based on an idea of repre-
senting subgrid-scale convection by an ensemble of convec-
tive plumes, by taking mathematical elements called mass
fluxes (Arakawa and Schubert, 1974). However, in the cur-
rent standard approaches, no interaction between the plumes
is considered, thus no geometrical information on a spatial
distribution of plumes is taken into account. This is also gen-
erally the case with all the current existing parameterizations
such as those based on the moment expansion, as well as on
the probability distribution. In either case, by moving the
problem into an abstract phase space, the geometrical infor-
mation of the subgrid-scale processes is lost.

Downscaling is also often performed in a more direct man-
ner, by a methodology more specifically called regionaliza-
tion, in which a regional model is run locally over a particular
region of an interest in order to numerically recover subgrid-
scale details missing in a host model. Probably, the biggest
irony may be found here: as a standard procedure, the region-
alization is performed off-line only after a computation of the
host model is completed. It is in spite of the fact that the re-
gionalization provides the subgrid-scale information that can
be directly used for evaluating their feedbacks into the re-
solved scales, if the two models were running in parallel. An
interactive nesting approach may partially2 provide a remedy
for this problem, but such an approach is rarely adopted by
the downscaling community.

An opposite extreme situation is found in the so-called
super-parameterization (Grabowski and Smolarkiewicz,
1999). This technique consists of placing an explicit model
(the so-called cloud-resolving model) to each grid box of a
global model. Limitations of the current approaches may be
emphasized: the explicit model not only fails to fill a whole
domain of the grid box, but it is also limited to two dimen-
sions in geometry. Nevertheless, in spite of all these limita-
tions, outputs from super-parameterization definitely provide
information for downscaling, that has not been exploited in
the author’s best knowledge.

It would be relatively straightforward to place a full re-
gional model or a cloud-resolving model into a few selected
grid boxes, in the same spirit as regionalization, but under a
fully interactive configuration as the super-parameterization.
Thereinafter, downscaling and super-parameterization can be
performed simultaneously. However, in the author’s best
knowledge, this attempt has not yet been made.

4 How to construct the downscaling and
parameterization together consistently?

Then, how can we perform the downscaling and parameter-
ization simultaneously together in a consistent manner? A
hint for this answer is already provided in the last section:

2Unfortunately, the current standard nesting approaches provide
a downscaling of only few factors.

if either a regional model or a cloud-resolving model can be
placed at each grid box in such a way, that fills a full grid-box
domain and fully interact with a host model, then the down-
scaling and super-parameterization can be performed simul-
taneously.

The purpose of SSR is to achieve the same result in a much
more economic manner without calling for a full numerical
model. Both the current statistical downscaling and param-
eterization are constructed under this philosophy. A way to
obtain these two operations as a pair would be to reduce a full
model into a compact description consistently. Importantly,
the reduction must be performed in such a way, that the pair
operation capacity in the full model is not lost as a result.

How such a reduction can be achieved? The image com-
pression may provide a source of an inspiration. The basic
idea of the image compression is to compress the size of an
electronic image file without substantially deteriorating its
quality. An easiest way of performing an image compres-
sion (cf., Mallat, 1998) is to represent an image,ϕ(x,y), by
wavelets, say,

χl(x,y) (l = 1,...,N), (3a)

as

ϕ(x,y) =

N∑
l=1

ϕ̃lχl(x,y). (3b)

Hereϕ̃ (l=1,...,N ) are the expansion coefficients. We retain
only leading wavelet coefficients characterized by indices:

l(i) (i=1,...,n) (4a)

for representing this image withn�N . As a result, we obtain
a compressed representation of the image:

ϕ(x,y) '

n∑
i=1

ϕ̃l(i)χl(i)(x,y). (4b)

By setting all the remaining less significant wavelet coeffi-
cients simply zero, the size of an image file can be substan-
tially reduced, or compressed. In other words, a heavy trun-
cation in wavelet space leads to an efficient image compres-
sion.

In fact, the file in concern is not necessarily an “image”,
but the same principle can be applied to any model outputs
ϕ(x,y,z,t) including the height,z and the time,t depen-
dences. The applicability of the idea is not limited to such
a static situation, but it can even be applied to a prognos-
tic situation, i.e., in a context of time integration of a model
itself. In other words, the time evolution of the wavelet co-
efficientsϕ̃l(i)(z,t) can be calculated in a compressed phase
space withi=1,...,n. Note that a prognostic set of equations
for ϕ̃l(i)(z,t) is easily obtained by a transformed method.
More extensive discussions on time integration methods are
found in Yano et al. (2004, 2005) and the references therein.
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Once such an efficient compression of a full system is ac-
complished, say, in wavelet space, the SSR problem is effec-
tively solved. The compressed output in the wavelet space
can easily be used for evaluating the feedbacks to the re-
solved scales (i.e., the right-hand side of Eq. 2; cf., Yano et
al., 2005), thus the parameterization is accomplished. Fur-
thermore, once the compressed data are properly decom-
pressed into a physical space, a full spatial distribution of a
physical variable in concern is recovered, simply by evoking
Eq. (4b), thus the downscaling is also accomplished.

The compression can be considered as a type of filtering,
but here the filtering is performed in a highly nonlinear man-
ner. Note that the truncation (Eq. 4a) is defined in much
more general manner than any conventional filtering method.
Characteristics of filtering is highly dependent on the posi-
tion due to a spatially-localized nature of the wavelet. It may
also be emphasized that the wavelet decomposition (Eq. 3a)
considered here retains a spatial distribution of a physical
variable. Unlike conventional parameterization approaches,
a downscaling can be performed in a straightforward manner
by Eq. (4b).

The proposed compression-decompression principle may
be more generally stated as follows: (1) Identify the basic
elements for given subgrid-scale physical processes. For at-
mospheric convection, these are traditionally considered as
plumes (cf., Arakawa and Schubert, 1974; Fig. 1). (2) Per-
form a mode decomposition (Eq. 3b) of a given subgrid-scale
system (e.g., a regional model, a cloud-resolving model). In
order to ensure the efficiency of the mode decompression (so
that a heavy truncation becomes possible), a set of mathe-
matical modes (Eq. 3a) should be chosen in such a way, that
the basic physical elements identified by the step (1) are well
represented. (3) Perform a heavy mode truncation (compres-
sion; cf., Eq. 4a) in a given phase space, in order for a param-
eterization (i.e., the right-hand side of Eq. 2 to be obtained).
(4) Perform an inverse transformation (decompression; cf.,
Eq. 4b) from a phase space to a physical space, in order to
obtain downscaling.

Probably, the most popular mathematical choice for a
mode decomposition would be Fourier. In convection param-
eterizations, the mass fluxes are used as basic set of modes.
The hydrological equivalence would be basins. A more gen-
eral mathematical framework is provided by the multiresolu-
tion analysis (cf., Mallat, 1998), which provides a basis for
wavelet.

The basic set of modes must be chosen in such a way,
that it fits well the geometrical structures of the subgrid-scale
processes in concern. A glance of any three-dimensional
visualizations of a typical atmospheric convective system
shows that it consists of ensembles of spatially-isolated co-
herent structures such as cumulus convective towers (histor-
ical “plumes”), convective downdrafts, stratiform cloud as-
cends, mesoscale downdrafts. Wavelet is a natural choice for
the decomposition, because it is exactly developed for a pur-
pose of efficiently representing spatially-isolated coherent

structures. Yano et al. (2004) demonstrate that the wavelet
can easily compress atmospheric convective systems down to
a level of 1% without substantially losing their overall struc-
ture. For this reason, Yano et al. (2005) propose to develop a
general SSR based on wavelet.

In this manner, the multiresolution analysis provides
a mathematical basis for developing parameterization and
downscaling as compression and decompression. A subse-
quent investigation by the author, however, reveals practical
difficulties in developing a wavelet-based SSR. The main dif-
ficulty is due to the fact that various physical processes, such
as microphysics, must be evaluated in the physical space.
Thus, an efficient forward and inverse transformation scheme
is required, but that turns out to be rather awkward to de-
velop. A compressed representation can be integrated in
time more efficiently, if all the calculations are simply per-
formed in the physical space without any transform into a
phase space. This leads to an idea of a segmentally-constant
approximation (SCA), which is to be documented in the next
section.

5 A compressed subgrid-scale representation (SSR)
under segmentally-constant approximation (SCA)

A new type of compressed subgrid-scale representa-
tion (SSR), called a nonhydrostatic anelastic model (NAM)
with segmentally-constant approximation (SCA), or NAM-
SCA, is developed under the principle discussed in the previ-
ous section. For this purpose, we take the mass flux, adopted
by the majority of the current convection parameterizations,
as a basic set of modes.

5.1 A single-plume model

The “mass flux” is a mathematical idealization for repre-
senting an ensemble of convective plumes. These spatially-
isolated coherent structures discussed in the previous section
may also be interpreted as a generalization of plumes. Each
convective plume is approximated by a horizontally homo-
geneous segment, which is called the mass flux. As a re-
sult, each horizontal plane of the system is approximated
by pieces of homogeneous segments, named the segmentally
constant approximation (SCA).

The simplest configuration under SCA is to place a
single convective plume into an otherwise horizontally-
homogeneous grid box domain. The configuration corre-
sponds to the so-called bulk mass flux formulation, an ap-
proach that is taken by the majority of mass-flux convection
parameterizations. Current standard bulk mass-flux parame-
terizations are constructed under various additional hypothe-
ses, approximations, as well as closures, but we can construct
a prototype model by simply imposing a geometry of a single
convective plume.
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For demonstrative purposes, here we take a two-
dimensional domain (a vertical section) periodic in the hori-
zontal direction. Within this domain, we place a single con-
vective plume, or a updraft, represented by a top-hat profile.

In other words, all the physical variables are approximated
by a constant value, i.e.,wc,θc, ϕc for the convective plume
(updraft), wherew and θ are the vertical velocity and the
potential temperature, respectively. A subscript,c is added
to indicate a convection component. We also assume that
outside the plume segment all the variables are also approx-
imated by constant environmental values i.e.,we, θe, ϕe,
where a subscript,e indicates environment. Thus,

ϕ(x,y,z,t) =

{
ϕc(z,t) if x1 ≤ x ≤ x2
ϕe(z,t) otherwise

where we assume that a plume occupies a rangex1≤x≤x2 at
every height,z of the system.

The governing equation for the plume elementϕc(z,t) is
obtained, as a standard procedure of finite-volume methods,
by integrating the original full system (Eq. 1) over a plume
segment [x1,x2]:

∂

∂t
σcϕc +

1

L
(u2ϕ2 − u1ϕ1) +

1

ρ

∂

∂z

ρσcwcϕc = σcFc (5)

whereσc=(x2−x1)/L is a fractional area occupied by the
plume,uj andϕj with j=1,2 are the values at the segment
interfacesx=xj (j=1,2) andFc is the forcing averaged over
the plume segment. Here,L is a horizontal domain size.
An equivalent equation for the environmental segment is also
readily obtained.

The system is self-contained, once the density,ρ is pre-
scribed as a fixed vertical profile (a standard approximation
used in the anelastic system), the horizontal velocity,u is di-
agnosed from the vertical velocity,w∗(∗=c,e) by the mass
continuity (note: as a result,u is segmentally linear in the
horizontal direction), and the pressure field,p is diagnosed
by inverting the Poisson equation. Segment interface values
are defined by the upstream approximation. Refer to Yano et
al. (2008) for details.3

An animation for the evolution of a single convective
plume under this configuration is available atftp://cnrm-ftp.
meteo.fr/pub-moana/yano/adgeo/singleplume.ppt:
the plume is initialized with a potential-temperature anomaly
of 2 K at the lowest 2.5 km of the 10 km – deep domain. The
horizontal domain size is 256 km. For simplicity, the back-
ground potential-temperature is set zero, so that no gravity
wave would be generated. The animation shows by the evo-
lution of the potential temperature anomaly that the initial
thermal plume induces an upward motion by a positive buoy-
ancy, which in turn, lifts the thermal anomaly with time. The
plume event ends by the thermal anomaly hitting the top wall.

3The code and a documentation for the following demonstration
is available atftp://cnrm-ftp.meteo.fr/pub-moana/yano/crm-sca/no
activationdry 0/.

A virtually realistic plume evolution is simulated by a rather
simple numerical configuration.

5.2 Multiple-plume models

The single-plume model well demonstrates the basic idea of
NAM-SCA. However, the model can only simulate a sin-
gle plume event. An event is simply transient, and once an
event is over, nothing happens in the system any more, un-
less a plume is re-initialized. Such a re-initialization proce-
dure is far from trivial, although certain artificial conditions
may be invented. An easier approach is to add more plumes
(i.e., segmentally constant segments) into the model domain,
so that the multiple plumes would continuously evolve in
time without artificial re-initializations. However, as more
plumes (constant segments) are added, the model becomes
less compressed. In order to maintain a high compression of
the model, constant segments must also be removed as soon
as a plume event is over. New constant segments must be
added only when a new plume begins to glow upwards. In
this manner, we end up at a highly-flexible adaptive mesh
refined scheme.

The implementation simply follows the above physical
principle: we retain a full resolution (as the resolution used
for solving the pressure Poisson problem) for the first few
layers of the model throughout the simulation. The model is
initialized with a random potential-temperature perturbation
in the first two layers. These initial noises induce plumes
with time. Once a plume is triggered, constant segments are
added upward with time ahead of an upward evolution of the
plume. As a plume event is over, these constant segments are
simply removed. For the details refer to Yano et al. (2010).

Two examples of animations are provided as
supplementary materials.4 The first case (ftp:
//cnrm-ftp.meteo.fr/pub-moana/yano/adgeo/blplumes.ppt)
simulates dry boundary-layer turbulent convection. It
corresponds to the case 24F given by Ayotte et al. (1996):
the case simulates a well-mixed dry convective boundary
layer of about 1 km depth. A horizontal domain is 3.2 km.
An artificially strong inversion is placed at the top of the
boundary layer in order to ensure its stability (cf., Fig. 5 of
Yano et al., 2010). The upper frame of the animation shows
the vertical velocity along with the boundaries of constant
segments indicated by vertical bars. The lower frame shows
the potential temperature as a deviation from a horizontal
average. After a transient initial period, a few thermal
plumes (each of them survives for 10–20 min), constantly
occupy the domain. The animation shows that the developed
time-dependent mesh-refined scheme only puts meshes
where plumes are active, and these segments are removed
when a plume episode is over.

4The codes used for these two demonstrations are available at
ftp://cnrm-ftp.meteo.fr/pub-moana/yano/crm-sca/withactivationayotte/,
ftp://cnrm-ftp.meteo.fr/pub-moana/yano/crm-sca/withactivationmoist 1/,
respectively.
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The second case (ftp://cnrm-ftp.meteo.fr/pub-moana/
yano/adgeo/gate.ppt) simulates a shear-driven organized
tropical squall-line system. The case is taken from Jung and
Arakawa (2005), in which an idealized large-scale forcing
is defined based on a GATE (Global Atmospheric Research
Program – GARP – Atlantic Tropical Experiment) Phase-
III mean observation. The horizontal domain is 512 km. In
this case, the moisture is introduced into the system, and the
cloud water and precipitation are handled based on a method-
ology developed by Kessler (1965). The animations of the
second case show from the top frame to bottom: the ver-
tical velocity (m/sec), the potential temperature (as a devi-
ation from a horizontal mean, K), the water-vapor mixing
ratio (g/kg), the cloud-water mixing ratio (g/kg), and the
precipitating-water mixing ratio (g/kg).

A westward-propagating squall-line system is successfully
simulated by placing intensive mesh refinements only over
convective regions. The dense mesh region also shifts, as the
squall-line system propagates with time. Outside the con-
vective regions, almost no mesh refinement is applied, and
the model runs successfully only with the eight constant seg-
ments posed homogeneously over the whole domain as the
minimum model resolution.

6 Conclusions

The present paper emphasizes that the downscaling and pa-
rameterization constitute two parts of a single problem of the
subgrid-scale representation (SSR). Unfortunately, the cur-
rent downscaling and parameterization schemes are not con-
structed in such manner. Some reasons for this limitation are
discussed.

A systematic, self-consistent methodology for developing
both downscaling and parameterization together as a pair is,
then proposed, based on mode decomposition (Yano et al.,
2005). Under this framework, compression of the original
full system for the subgrid-scale processes (e.g., a regional
model, a cloud-resolving model) leads to a parameterization,
because it provides a compact description of subgrid-scale
processes. By decompressing this compressed information,
a spatial information on the subgrid-scale processes is recov-
ered, thus a downscaling is achieved subsequently. A mathe-
matical theory called multiresolution analysis (Mallat, 1998)
provides a conceptual framework for this purpose.

As an example of this compression-decompression ap-
proach, the nonhydrostatic anelastic model (NAM) with
segmentally-constant approximation (SCA), or NAM-SCA
is introduced. NAM-SCA is based on the idea of decom-
posing a subgrid-scale atmospheric system into an ensem-
ble of convective plumes. Each plume is assumed to take a
horizontally-homogeneous distribution of physical variables
over a finite segment at each vertical level, thus the concept
of SCA follows. Mathematically, the method is an applica-
tion of a spirit of the multiresolution analysis within a context

of a finite volume approach. Physically, NAM-SCA can be
considered as a prototype of the mass-flux convection pa-
rameterization (Arakawa and Schubert, 1974), but without
closure assumptions.

The idea of NAM-SCA is demonstrated for the simplest
case with a single plume and more complex situations with
multiple plumes. In the latter case, the segmentally-constant
segments are activated and deactivated with time by follow-
ing the evolution of plumes.
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