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Abstract. The Lightning Potential Index (LPI) is a mea-
sure of the potential for charge generation and separation that
leads to lightning flashes in convective thunderstorms. It is
calculated from model simulated updraft and microphysical
fields. It was designed to predict the potential of lightning
occurrence in operational weather forecasting models, but
could possibly be used to improve short-range forecasts of
heavy rain. The index is modified here to be model grid-scale
transparent between 1 and 4 km (the approximate upper limit
of explicit microphysical weather forecasts). Two case stud-
ies show that the modification appears to work quite well,
and that LPI can be calculated on both an extremely high res-
olution research-grid (i.e., 1.33 km) and high resolution (i.e.,
4 km) operationally compatible forecast grid. Analytical ex-
pressions are presented to use the LPI to predict the hourly
lightning flash density.

1 Introduction

Lightning is a characteristic of severe weather and often ac-
companies large hail and torrential rains, which under certain
circumstances (terrain type, slope, drainage, soil saturation)
can turn into flash floods. It is also a natural hazard by it-
self, with potential lethal consequences to human life and
considerable damages to electrical infrastructures and avia-
tion. The need for lightning prediction is clear and indeed
many real-time lightning detection systems are now able to
accurately determine the impact location of cloud-to-ground
lightning (see review in Sect. 6.10 in MacGorman and Rust,
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1998). There has been, however, a much lower capability to
forecast the potential for lightning occurrence in short-range
forecasts. Although several indices are used by meteorolo-
gists to forecast the probabilities of thunderstorms (such as
LI, KI, CAPE and CPTP), they are not based on the mi-
crophysics of charge separation in thunderstorms and rely
on thermodynamic instability parameters, thus resulting in
coarse scale outputs.

Recently Lynn and Yair (2008) and Yair et al. (2010) de-
scribed the development and utilization of the Lightning Po-
tential Index (LPI), a new index for evaluating the poten-
tial for lightning activity from weather forecast model output
data. Yair et al. (2010) showed that the LPI correlates pos-
itively with observed lightning density and also heavy rain-
fall. They suggested that the LPI could be used to predict the
potential for the occurrence of lightning, and reasoned that it
may be used as an intermediary to improve short-range fore-
casts of heavy rain through comparing observed lightning
to model calculated LPI intensity and location. The LPI is
calculated within the charge separation region of clouds be-
tween 0◦ and− 20◦C, where the non-inductive mechanism
by collisions of ice and graupel particles in the presence of
super-cooled water is most effective (see extensive review
of charge separation mechanisms operating in thunderstorms
by Saunders, 2008). Although the LPI is an empirical equa-
tion, it consists of cloud-physical parameters – so the LPI
as a measure of the potential for electrical activity should be
location independent.

Yair et al. (2010) used the Weather Research and Fore-
casting Model (i.e., WRF; Skamarock, 2005) with explicit
microphysics at 1km grid resolution. However, it is still im-
practical to make operational weather forecasts using 1km
grid resolution due to the demands of computational re-
sources. Instead, the WRF is run, for example, using 4 km
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grid resolution twice a day over the Continental US, while
other operational forecast centers use 3 or 4 km grid resolu-
tion. The present paper suggests how to modify the LPI from
its current formulation so as to become grid-scale “transpar-
ent” between 1 and 4 km grid resolution. It also uses obser-
vations and model calculated LPI to derive equations that can
be used to predict lightning density.

2 Model description

2.1 The Lightning Potential Index (LPI)

The LPI is defined as the volume integral of the total mass
flux of ice and liquid water within the “charging zone” (0 to
−20◦C) in a developing thundercloud. It portrays the po-
tential of the thundercloud to separate electrical charge in
the relevant depth via the non-inductive ice-graupel mecha-
nism, but it does not calculate the resultant electric field or its
evolution. It is derived from the model simulated grid-scale
updraft velocity and the mass mixing-ratios of liquid water,
cloud ice, snow, and graupel. This approach is in line with
many studies showing strong and consistent relationships be-
tween lightning flash rates (that can be integrated in time to
give total lightning) and the presence of small ice and high
precipitation rates (Petersen and Rutledge, 1998; Sherwood
et al., 2006). Deierling et al. (2008) and Deierling and Pe-
tersen (2008) showed that the updraft volume in the charging
zone (at temperatures below−5◦C) was highly correlated
with total lightning activity. Recent modeling work by Mc-
Gorman et al. (2008) showed that the relationships of total
flash rates with rain mass, ice crystal mass flux, and graupel
volume are significant (>0.65), while weak correlation (0.3)
is found between maximum flash rate and maximum up-
draft. Wiens (2008) summarized numerous studies during
the STEPS campaigns, combining remote and in-situ mea-
surements of cloud microphysical properties and the electri-
cal behavior of the storm. Their main finding was that the
total flash rate of the storm is strongly correlated with the
graupel echo volume and also with the updraft volume.

These studies give strong experimental and observational
support to the concept of the LPI, which in essence maps the
fluxes of the main charging agents in thunderstorms. The LPI
evolves with time since it is calculated from the microphysi-
cal and dynamical model fields at each time step and in every
domain grid point. It is non-zero only within the charging
zone, and furthermore the LPI for a particular model grid is
only non-zero when a majority of cells within a 5 grid-radius
of that grid point have a vertical velocity>0.5 m s−1, indi-
cating the growth phase of the thunderstorm. The LPI has
the units of [J kg−1] and is defined by:

LPI = 1/V ∫∫∫ ε w2 dx dy dz (1)

whereV is the model unit volume,w is the vertical wind
component in ms−1. The integral is computed within the

cloud volume from the freezing level (altitude in km above
the surface) to the height of the−20◦C isotherm; the model
computed mass mixing ratios for snow (qs), cloud ice (qi)
and graupel (qg) are in units (kg/kg), andε is a dimensionless
number which has value between 0 and 1 defined by:

ε = 2(Qi Ql)
0.5/(Qi + Ql) (2)

where Ql is the total liquid water mass mixing ratio in
(kg/kg) andQi is the ice fractional mixing ratio in (kg/kg)
defined by

Qi = qg[((qs qg)
0.5/(qs + qg)) + ((qi qg)

0.5/(qi + qg))] (3)

In essence,ε is a scaling factor for the cloud updraft, and at-
tains a maximal value when the mixing ratios of super-cooled
liquid water (Ql) and of the combined ice species (Qi) are
equal (note,Qi is also obtains a maximal value when the
mass mixing ratio of ice, snow, and graupel are equal). It
signifies the fact that charge separation requires all these in-
gredients to operate synergistically within the charging zone,
as shown by many laboratory experiments summarized by
Saunders (2008).

One purpose of the study was to investigate the promise
of using the LPI in operational forecast models. To this end
the formulation used by Yair et al. (2009) was modified by
multiplying it by the grid resolution in kilometers (divided by
1.33 km; the base resolution). This is based on the continuity
equation, assuming that the gradient of the horizontal wind is
proportional to the vertical velocity divided by the length of a
grid box. Simulation results from different case studies (not
described here) of LPI ranging from a 1.33 km grid to those
averaged to a 4 km grid (hosting the 1.33 km grid in a two-
way nesting configuration) were analyzed, and it was found
that such a relationship is a good approximation. Another
goal of this study is to use the LPI to calculate the predicted
lightning flash density. The method is described in the results
section, and is based on the analysis presented there.

3 Methodology

3.1 The Weather Research and Forecasting model
(WRF)

The WRF model is being used by many operational services
for short and medium range weather forecasting. It is a fully
compressible, non-hydrostatic atmospheric model, using a
terrain-following hydrostatic vertical pressure coordinate. In
recent years it has also become an accessible research tool,
as it offers multiple physics options that can be flexibly com-
bined in many ways (full formulation and documentation
can be accessed through UCAR at:http://www.mmm.ucar.
edu/wrf/users/pub-doc.html). In the present study, the model
was initialized using reanalysis data from the Global Fore-
cast Systems model (GFS), and the model simulations were
for 24 h. In total, there were four domains: Domain 1 had
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90×90 elements at 36 km grid resolution. Domain 2 had
136×136 elements at 12 km grid resolution. Domain 3 had
181×181 elements at 4 km grid resolution, and Domain 4
had 232×232 elements at 1km grid resolution. There was
two-way nesting between the grids. The model has run ei-
ther using the first three grids (where the innermost grid was
at 4 km) or all four grids (where the innermost grid was at
1.33 km grids). The WRF Single Moment Scheme (Dudhia
et al., 2009) was used for calculating the required parameters
for computing the LPI.

The investigation included two cases, both of which had
significant lightning activity and heavy rainfall. Case A
was taken from the FLASH project data base, and consti-
tutes a 24 h simulation of an early-fall flash flood that oc-
curred in the Emilia Romagna region in north-western Italy,
on 8 September 2006. Lightning activity in this event was
very widespread, but was highly concentrated near the site of
the flash flood. Case B was a winter-type heavy rain event
in northern Israel which occurred on 28 February 2009, with
the heaviest rain falling in the Lake Kinneret basin (Sea of
Galilee).

3.2 Lightning data

For the Israeli case study, cloud-to-ground (CG) lightning lo-
cations obtained from the Israeli Electrical Company LPATS
(Altaratz et al., 2003) were used, an array that includes
7 VLF antennas, dispersed over the country. The system
detects cloud-to-ground lightning flashes that occur in Is-
rael and up to 500 km from its borders, with a stated detec-
tion efficiency of∼90%; the unique network configuration
of the LPATS detectors in Israel is dictated by the geogra-
phy and results in almost a straight north-south line, which
leads to detection minima in regions which are further out
of the network coverage along this line. Specifically, the ar-
eas of southern Lebanon and the Gulf of Eilat in the Red
Sea display a lower percentage of detection. Operationally,
this system only detects cloud-to ground (CG) flashes and
misses Intra-Cloud (IC) activity, and hence the total numbers
of flashes reported in the various case studies in Israel is al-
ways lower than the actual lightning number. Despite this
limitation the LPATS data properly represents the spatial dis-
tribution of lightning activity, as CG and IC flashes evolve
together along the cloud life cycle (Altaratz et al., 2003).

For the Italian case study, data from the ZEUS European
network were employed, which has good coverage of the
central and western Mediterranean. This is a long-range
lightning detection network with receivers located at 6 sites
in Europe (Lagouvardos et al., 2009). The ZEUS receivers
detect sferics discharges in the VLF frequency range (7–
15 kHz) emitted by CG lightning and are capable of captur-
ing up to 70 sferics per second. The location accuracy of
ZEUS is of the order of 6 km over the Mediterranean region,
and it is also capable of detecting some fraction of the intr-
acloud flashes (IC), though the exact value may be hard to

estimate. Further details on the ZEUS network can be found
in Kotroni and Lagouvardos (2008).

4 Results from the two case studies

Figure 1 shows observed lightning and predicted LPI for each
case study. A visual inspection shows that both the 1.33 km
and 4 km grids predicted the size and locale of places where
thunderstorms occurred in both events. Figure 2 shows the
correlations between the values of LPI and the accumulated
numbers of observed lightning flashes. Only data in the over-
lapping areas of the 1.33 km grids were used to calculate the
correlations in each case. To obtain the data for these figures,
the observed lightning flashes (from 00:00 UTC on each start
date to 00:00 UTC on the next day) and values of LPI were
time averaged (over the 24 h simulation), and then each was
summed within each 36km WRF outer grid and then area av-
eraged. Thus there were 81 4 km2 and 729 1.33 km2 WRF
grid cells within the WRF 36km grid over which the averag-
ing was done.

There is a linear correlation between the lightning density
(in units of flashes per km2 per hour) and the time-averaged
values of computed LPI and in both case studies. The corre-
lation values for the 1.33 km grid scale in case study A are
slightly lower compared to the 4 km grid scale (0.39 vs. 0.46)
while for case study B the opposite is true (0.71 vs. 0.65).
The most likely reason for the fact that the correlations are
relatively low in the Italy case-study is because the model
simulated less accurately the location of the strongest con-
vection compared to the Israel case study. This is apparent
from Fig. 1, where a spatial offset is evident.

Since one goal of the research was to derive a relationship
between lightning density and the predicted LPI, both the
lightning density and the LPI-averaged values were sorted
in ascending order. This sorting removes any spatial infor-
mation from the model data; it is “like” making a perfect
forecast of convection, and assuming that high values of LPI
correspond spatially (and implicitly in time) with high val-
ues of lightning density. Figure 3 shows a linear relation-
ship (R=0.98) between the sorted fraction of observed total
lightning in Case A. In Case B, a second order regression
equation (R=0.95) had a higher correlation coefficient than
an assumed linear relationship (R=0.90). It is suggested that
the concave appearance of the second order relationship be-
tween cloud-to-ground lightning density and LPI in the lower
range of values of LPI is due to the fact that charge separation
takes place in clouds some time before cloud-to-ground light-
ning activity occurs. The linear regression equation shown in
Fig. 3 for observed fraction of total lightning can be used to
calculate lightning density as a function of LPI in Case A,
while the second order linear regression equation should be
used in Case B to predict cloud-to-ground lightning. Note
the first order accuracy of such a prediction depends on the
forecast fidelity of the model simulation of convection and
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Fig. 1. Observed 24 h lightning is two case studies for Italy and Israel. The upper row is for case study(A) 9 September 2008 (ZEUS
network), and the lower row for case study(B) 28 February 2009 (LPATS network), respectively. WRF model calculated, 24 h averaged,
Lightning Potential Index (LPI) for both cases at 4 km (center) and 1.33 km (right) grid resolution for the same dates.

Fig. 2. Correlations between the value of the calculated (time averaged) LPI in 4-km and 1-km grids and the accumulated lightning flash
numbers in the respective areas and times for the two case studies Italy (left) and Israel (right).

Adv. Geosci., 23, 11–16, 2010 www.adv-geosci.net/23/11/2010/



B. Lynn and Y. Yair: Prediction of lightning flash density with the WRF model 15

Fig. 3. Lightning versus LPI for the two case studies Italy (left) and Israel (right) averaged for 36 km grid points.

timing and location of predicted lightning producing clouds.
For example, a visual inspection of Fig. 1 suggests that both
the 1.33 km and 4 km simulations over-estimate the spatial
extend of high LPI values compared to the coverage of high
numbers of accumulated total lightning, which suggests that
the linear relationship shown in Fig. 3 for Case A should
probably be steeper than shown.

5 Concluding remarks

The Lightning Potential Index (LPI) is a measure of the
potential for charge generation and separation that leads
to lightning flashes in convective thunderstorms, calculated
from the WRF model microphysical and dynamical fields.
The WRF model was used to simulate two heavy-rain events
which had significant lightning activity. The model repro-
duced the general characteristics of convection and the spa-
tial distribution of lightning activity. When averaged over
a 36×36 km2 area, the results show robust relationships be-
tween the values of LPI and the observed lightning activity.
It can be concluded that the usage of the Lightning Potential
Index (LPI) in operational 4-km grid scale models can yield
valuable information on major areas where convection is ex-
pected and where the potential for thunderstorms is large.

Maps of LPI and predicted lighting density can be pro-
duced in regular operational runs of short range forecasting
models and to serve as a valuable early warning tool for rele-
vant users. For instance, the observed lightning fields can be
compared to the model predicted LPI (over shorter time peri-
ods than used in this analysis). High correlations between
the two would suggest that the model predicted evolution
of LPI should be considered as a potential warning for the
short-term future evolution of lightning. Moreover, such high
correlations would indicate that the model predicted rainfall

should be treated with greater confidence than without the
knowledge of predicted LPI. Spatial variations between the
locations of model predicted LPI (and the associated heavy
rain) would suggest that potential flash-flood watches for
other locations should be upgraded to warnings and vice-
versa.
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